|   | 
Details
   web
Records
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A.
Title Neutrino oscillation bounds on quantum decoherence Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 097 - 24pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing
Abstract We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.
Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001118948700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5849
Permanent link to this record
 

 
Author De Romeri, V.; Papoulias, D.K.; Ternes, C.A.
Title Light vector mediators at direct detection experiments Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 165 - 22pp
Keywords New Gauge Interactions; New Light Particles; Specific BSM Phenomenology
Abstract Solar neutrinos induce elastic neutrino-electron scattering in dark matter direct detection experiments, resulting in detectable event rates at current facilities. We analyze recent data from the XENONnT, LUX-ZEPLIN, and PandaX-4T experiments and we derive stringent constraints on several U(1) ' extensions of the Standard Model, accommodating new neutrino-electron interactions. We provide bounds on the relevant coupling and mass of light vector mediators for a variety of models, including the anomaly-free B – L model, lepton flavor-dependent interactions like L alpha – L beta , B – 2L e – L mu,tau , B – 3L alpha , and B + 2L μ+ 2L tau models. We compare our results with other limits obtained in the literature from both terrestrial and astrophysical experiments. Finally, we present forecasts for improving current bounds with a future experiment like DARWIN.
Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001224185000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6132
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title Light vector mediators facing XENON1T data Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 809 Issue Pages 135681 - 5pp
Keywords
Abstract Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.
Address [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000581871500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4602
Permanent link to this record