|   | 
Details
   web
Records
Author Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.
Title Schwinger-Dyson truncations in the all-soft limit: a case study Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 11 Pages 1068 - 15pp
Keywords
Abstract We study a special Schwinger-Dyson equation in the context of a pure SU(3) Yang-Mills theory, formulated in the background field method. Specifically, we consider the corresponding equation for the vertex that governs the interaction of two background gluons with a ghost-antighost pair. By virtue of the background gauge invariance, this vertex satisfies a naive Slavnov-Taylor identity, which is not deformed by the ghost sector of the theory. In the all-soft limit, where all momenta vanish, the form of this vertex may be obtained exactly from the corresponding Ward identity. This special result is subsequently reproduced at the level of the Schwinger-Dyson equation, by making extensive use of Taylor's theorem and exploiting a plethora of key relations, particular to the background field method. This information permits the determination of the error associated with two distinct truncation schemes, where the potential advantage from employing lattice data for the ghost dressing function is quantitatively assessed.
Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000889065200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5426
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Oliveira, B.M.; Papavassiliou, J.
Title Patterns of gauge symmetry in the background field method Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 1 Pages 86 - 20pp
Keywords
Abstract The correlation functions of Yang-Mills theories formulated in the background field method satisfy linear Slavnov-Taylor identities, which are naive generalizations of simple tree level relations, with no deformations originating from the ghost-sector of the theory. In recent years, a stronger version of these identities has been found to hold at the level of the background gluon self-energy, whose transversality is enforced separately for each special block of diagrams contributing to the gluon Schwinger-Dyson equation. In the present work we demonstrate by means of explicit calculations that the same distinct realization of the Slavnov-Taylor identity persists in the case of the background three-gluon vertex. The analysis is carried out at the level of the exact Schwinger-Dyson equation for this vertex, with no truncations or simplifying assumptions. The demonstration entails the contraction of individual vertex diagrams by the relevant momentum, which activates Slavnov-Taylor identities of vertices and multi-particle kernels nested inside these graphs; the final result emerges by virtue of a multitude of extensive cancellations, without the need of performing explicit integrations. In addition, we point out that background Ward identities amount to replacing derivatives of propagators by zero-momentum background-gluon insertions, in exact analogy to standard properties of Abelian gauge theories. Finally, certain potential applications of these results are briefly discussed.
Address [Aguilar, A. C.; Oliveira, B. M.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000923274000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5481
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.; Santos, L.R.
Title Planar degeneracy of the three-gluon vertex Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 6 Pages 549 - 20pp
Keywords
Abstract We present a detailed exploration of certain outstanding features of the transversely-projected three-gluon vertex, using the corresponding Schwinger-Dyson equation in conjunction with key results obtained from quenched lattice simulations. The main goal of this study is the scrutiny of the approximate property denominated “planar degeneracy”, unveiled when the Bose symmetry of the vertex is properly exploited. The planar degeneracy leads to a particularly simple parametrization of the vertex, reducing its kinematic dependence to essentially a single variable. Our analysis, carried out in the absence of dynamical quarks, reveals that the planar degeneracy is particularly accurate for the description of the form factor associated with the classical tensor, for a wide array of arbitrary kinematic configurations. Instead, the remaining three form factors display considerable violations of this property. In addition, and in close connection with the previous point, we demonstrate the numerical dominance of the classical form factor over all others, except in the vicinity of the soft-gluon kinematics. The final upshot of these considerations is the emergence of a very compact description for the three-gluon vertex in general kinematics, which may simplify significantly nonperturbative applications involving this vertex.
Address [Aguilar, A. C.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001117709800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5847
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Oliveira, B.M.; Papavassiliou, J.; Santos, L.R.
Title Schwinger poles of the three-gluon vertex: symmetry and dynamics Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 10 Pages 889 - 20pp
Keywords
Abstract The implementation of the Schwinger mechanism endows gluons with a nonperturbative mass through the formation of special massless poles in the fundamental QCD vertices; due to their longitudinal character, these poles do not cause divergences in on-shell amplitudes, but induce detectable effects in the Green's functions of the theory. Particularly important in this theoretical setup is the three-gluon vertex, whose pole content extends beyond the minimal structure required for the generation of a gluon mass. In the present work we analyze these additional pole patterns by means of two distinct, but ultimately equivalent, methods: the Slavnov-Taylor identity satisfied by the three-gluon vertex, and the nonlinear Schwinger-Dyson equation that governs the dynamical evolution of this vertex. Our analysis reveals that the Slavnov-Taylor identity imposes strict model-independent constraints on the associated residues, preventing them from vanishing. Approximate versions of these constraints are subsequently recovered from the Schwinger-Dyson equation, once the elements responsible for the activation of the Schwinger mechanism have been duly incorporated. The excellent coincidence between the two approaches exposes a profound connection between symmetry and dynamics, and serves as a nontrivial self-consistency test of this particular mass generating scenario.
Address [Aguilar, A. C.; Oliveira, B. M.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001118963200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5861
Permanent link to this record
 

 
Author Xu, S.S.; Cui, Z.F.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Zong, H.S.
Title New perspective on hybrid mesons Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 55 Issue 7 Pages 113 - 6pp
Keywords
Abstract We introduce a novel approach to the hybrid-meson (valence-gluon+quark+antiquark) bound-state problem in relativistic quantum field theory. Exploiting the existence of strong two-body correlations in the gluon-quark, q(g) = [gq], and gluon-antiquark, (q) over bar (g) = [g (q) over bar] channels, we argue that a sound description of hybrids can be obtained by solving a coupled pair of effectively two-body equations; and, consequently, that hybrids may be viewed as highly correlated q(g)(q) over bar <-> q (q) over bar (g) bound states. Analogies may be drawn between this picture of hybrid structure and that of baryons, in which diquark (quark+quark) correlations play a key role. The potential of this formulation is illustrated by calculating the spectrum of light-quark isovector hybrid mesons.
Address [Xu, Shu-Sheng] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China, Email: leichang@nankai.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000476540800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4088
Permanent link to this record
 

 
Author Aguilar, A.C. et al; Papavassiliou, J.
Title Pion and kaon structure at the electron-ion collider Type Journal Article
Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 55 Issue 10 Pages 190 - 15pp
Keywords
Abstract Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.
Address [Aguilar, Arlene C.] Univ Campinas UNICAMP, Inst Phys Gled Wataghin, BR-13083859 Campinas, SP, Brazil, Email: ent@jlab.org;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000499964100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4212
Permanent link to this record
 

 
Author Souza, E.V.; Ferreira, M.N.; Aguilar, A.C.; Papavassiliou, J.; Roberts, C.D.; Xu, S.S.
Title Pseudoscalar glueball mass: a window on three-gluon interactions Type Journal Article
Year 2020 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 56 Issue 1 Pages 25 - 7pp
Keywords
Abstract In pure-glue QCD, gluon-gluon scattering in the J(PC) = 0(-+) channel is described by a very simple equation, especially if one considers just the leading contribution to the scattering kernel. Of all components in this kernel, only the three-gluon vertex, V-mu nu rho, is poorly constrained by contemporary analyses; hence, calculations of 0(-+) glueball properties serve as a clear window onto the character and form of V-mu nu rho. This is important given that many modern calculations of V-mu nu rho predict the appearance of an infrared suppression in the scalar function which comes to modulate the bare vertex after the nonperturbative resummation of interactions. Such behaviour is a peculiar prediction; but we find that the suppression is essential if one is to achieve agreement with lattice-QCD predictions for the 0(-+) glueball mass. Hence, it is likely that this novel feature of V-mu nu rho is real and has observable implications for the spectrum, decays and interactions of all QCD bound-states.
Address [Souza, E. V.] Fed Inst Educ Sci & Technol Piaui, BR-64605500 Picos, Piaui, Brazil, Email: emanuel.veras@ifpi.edu.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000513948400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4291
Permanent link to this record
 

 
Author Cui, Z.F.; Ding, M.; Morgado, J.M.; Raya, K.; Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Schmidt, S.M.
Title Concerning pion parton distributions Type Journal Article
Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 58 Issue 1 Pages 10 - 14pp
Keywords
Abstract Analyses of the pion valence-quark distribution function (DF), u(pi) (x; sigma), which explicitly incorporate the behaviour of the pion wave function prescribed by quantum chromodynamics (QCD), predict u(pi) (x similar or equal to 1; sigma) similar to (1 – x)(beta(sigma)), beta(sigma greater than or similar to m(p)) > 2, where mp is the proton mass. Nevertheless, more than forty years after the first experiment to collect data suitable for extracting the x similar or equal to 1 behaviour of up, the empirical status remains uncertain because some methods used to fit existing data return a result for up that violates this constraint. Such disagreement entails one of the following conclusions: the analysis concerned is incomplete; not all data being considered are a true expression of qualities intrinsic to the pion; or QCD, as it is currently understood, is not the theory of strong interactions. New, precise data are necessary before a final conclusion is possible. In developing these positions, we exploit a single proposition, viz. there is an effective charge which defines an evolution scheme for parton DFs that is all-orders exact. This proposition has numerous corollaries, which can be used to test the character of any DF, whether fitted or calculated.
Address [Cui, Z. -F.; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China, Email: binosi@ectstar.eu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000746605900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5083
Permanent link to this record
 

 
Author Binosi, D.; Papavassiliou, J.
Title Gauge invariant Ansatz for a special three-gluon vertex Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 121 - 23pp
Keywords Nonperturbative Effects; QCD
Abstract We construct a general Ansatz for the three-particle vertex describing the interaction of one background and two quantum gluons, by simultaneously solving the Ward and Slavnov-Taylor identities it satisfies. This vertex is known to be essential for the gauge-invariant truncation of the Schwinger-Dyson equations of QCD, based on the pinch technique and the background field method. A key step in this construction is the formal derivation of a set of crucial constraints (shown to be valid to all orders), relating the various form factors of the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity. When inserted into the Schwinger-Dyson equation for the gluon propagator, this vertex gives rise to a number of highly non-trivial cancellations, which are absolutely indispensable for the self-consistency of the entire approach.
Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ect.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 624
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title QCD effective charges from lattice data Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 002 - 24pp
Keywords Nonperturbative Effects; QCD
Abstract We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000281504500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 384
Permanent link to this record