|   | 
Details
   web
Records
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1056-1062
Keywords Acquisition in HP-Ge detectors; high-speed ADCs; low-noise electronics design
Abstract This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2278
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1063-1069
Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination
Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2279
Permanent link to this record
 

 
Author AGATA Collaboration (Louchart, C. et al); Gadea, A.; Huyuk, T.
Title Collective nature of low-lying excitations in 70,72,74Zn from lifetime measurements using the AGATA spectrometer demonstrator Type Journal Article
Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 87 Issue 5 Pages 054302 - 10pp
Keywords
Abstract Background: Neutron-rich nuclei with protons in the fp shell show an onset of collectivity around N=40. Spectroscopic information is required to understand the underlying mechanism and to determine the relevant terms of the nucleon-nucleon interaction that are responsible for the evolution of the shell structure in this mass region. Methods: We report on the lifetime measurement of the first 2+ and 4+ states in 70,72,74Zn and the first 6+ state in 72Zn using the recoil distance Doppler shift method. The experiment was carried out at the INFN Laboratory of Legnaro with the AGATA demonstrator, first phase of the Advanced Gamma Tracking Array of highly segmented, high-purity germanium detectors coupled to the PRISMA magnetic spectrometer. The excited states of the nuclei of interest were populated in the deep inelastic scattering of a 76Ge beam impinging on a 238U target. Results: The maximum of collectivity along the chain of Zn isotopes is observed for 72Zn at N=42. An unexpectedly long lifetime of 20−5.2+1.8 ps was measured for the 4+ state in 74Zn. Conclusions: Our results lead to small values of the B(E2;41+→21+)/B(E2;21+→01+) ratio for 72,74Zn, suggesting a significant noncollective contribution to these excitations. These experimental results are not reproduced by state-of-the-art microscopic models and call for lifetime measurements beyond the first 2+ state in heavy zinc and nickel isotopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1638
Permanent link to this record