|   | 
Details
   web
Records
Author ANTARES, IceCube, Pierre Auger, LIGO Sci and VIRGO Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Type Journal Article
Year 2017 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 850 Issue 2 Pages L35 - 18pp
Keywords gamma-ray burst: general; gravitational waves; neutrinos
Abstract The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP, F-505686800 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000417541800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3421
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 853 Issue 1 Pages L7 - 5pp
Keywords astroparticle physics; neutrinos
Abstract The ANTARES detector is at present the most sensitive neutrino telescope in the northern hemisphere. The highly significant cosmic neutrino excess observed by the Antarctic IceCube detector can be studied with ANTARES, exploiting its complementing field of view, exposure, and lower energy threshold. Searches for an all-flavor diffuse neutrino signal, covering nine years of ANTARES data taking, are presented in this Letter. Upward-going events are used to reduce the atmospheric muon background. This work includes for the first time in ANTARES both track-like (mainly nu mu) and shower-like (mainly nu(e)) events in this kind of analysis. Track-like events allow for an increase of the effective volume of the detector thanks to the long path traveled by muons in rock and/ or sea water. Shower-like events are well reconstructed only when the neutrino interaction vertex is close to, or inside, the instrumented volume. A mild excess of high-energy events over the expected background is observed in nine years of ANTARES data in both samples. The best fit for a single power-law cosmic neutrino spectrum, in terms of perflavor flux at 100 TeV, is Phi(1f)(0) (100 TeV) = (1.7 +/- 1.0) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) with spectral index Gamma = 2.4(-0.4)(+0.5) .The null cosmic flux assumption is rejected with a significance of 1.6 sigma .
Address [Albert, A.; Drouhin, D.; Racca, C.] Inst Univ Technol Colmar, Univ Haute Alsace, GRPHE, 34 Rue Grillenbreit BP, F-505686800 Colmar, France, Email: lfusco@bo.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000423182700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3456
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title The search for neutrinos from TXS 0506+056 with the ANTARES telescope Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 863 Issue 2 Pages L30 - 6pp
Keywords astroparticle physics; elementary particles; galaxies: active
Abstract The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope, are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses information from the IceCube time-dependent analysis that reported bursting activity centered on 2014 December 13, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list has a smaller p-value been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.
Address [Albert, A.; Drouhin, D.; Ruiz, T. Gregoire; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokesperson@in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000442002100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3697
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J.
Title Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes Type Journal Article
Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume 868 Issue 2 Pages L20 - 7pp
Keywords cosmic rays; diffusion; Galaxy: disk; gamma rays: diffuse background; neutrinos
Abstract The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokeperson@in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000450844500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3807
Permanent link to this record
 

 
Author ANTARES Collaboration (Tamburini, C. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface Type Journal Article
Year 2013 Publication Plos One Abbreviated Journal PLoS One
Volume 8 Issue 7 Pages e67523 - 10pp
Keywords
Abstract The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
Address [Tamburini, Christian; Lefevre, Dominique; Martini, Verine; Robert, Anne; Dekeyser, Ivan; Fuda, Jean-Luc] Aix Marseille Univ, CNRS INSU, IRD, MIO,U110, Marseille, France, Email: christian.tamburini@univ-amu.fr;
Corporate Author Thesis
Publisher Public Library Science Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1932-6203 ISBN Medium
Area Expedition Conference
Notes WOS:000321765300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1496
Permanent link to this record