toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 7 Pages 618 - 29pp  
  Keywords  
  Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 x 6 x 6 m(3) liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: clara.cuesta@ciemat.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000826161300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5293  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 10 Pages 903 - 19pp  
  Keywords  
  Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.  
  Address [Isenhower, L.] Abilenexs Christian Univ, Abilene, TX 79601 USA, Email: tjyang@fnal.gov  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866503200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5386  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 7 Pages 618 - 25pp  
  Keywords  
  Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 +/- 0.6% and 84.1 +/- 0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: leigh.howard.whitehead@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001061746600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5721  
Permanent link to this record
 

 
Author Schwetz, T.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 13 Issue Pages 063004 - 15pp  
  Keywords  
  Abstract We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.  
  Address [Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292137500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 666  
Permanent link to this record
 

 
Author Schwetz, T.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Where we are on theta(13): addendum to 'Global neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters' Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 13 Issue Pages 109401 - 5pp  
  Keywords  
  Abstract In this addendum to Schwetz et al (2011 New J. Phys. 13 063004), we consider the recent results from long-baseline nu(mu) -> nu(e) searches at the Tokai to Kamioka (T2K) and Main Injector Neutrino Oscillation Search (MINOS) experiments and investigate their implications for the mixing angle theta(13) and the leptonic Dirac CP phase delta. By combining the 2.5 sigma indication for a nonzero value of theta(13) coming from the T2K data with global neutrino oscillation data, we obtain a significance for theta(13) > 0 of about 3 sigma with best fit points sin(2) theta(13) = 0.013 (0.016) for normal (inverted) neutrino mass ordering. These results depend somewhat on assumptions concerning the analysis of reactor neutrino data.  
  Address [Schwetz, T] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296664700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 801  
Permanent link to this record
 

 
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F. url  doi
openurl 
  Title Electroweak breaking and neutrino mass: `invisible' Higgs decays at the LHC (type II seesaw) Type Journal Article
  Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 18 Issue Pages 033033 - 21pp  
  Keywords neutrino mass; invisible Higgs decays; Higgs physics  
  Abstract Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant `theoretical' and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as `invisible' Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.  
  Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373727500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2621  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
  Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 19 Issue Pages 093005 - 14pp  
  Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions  
  Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410457100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3292  
Permanent link to this record
 

 
Author Boucenna, M.S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenology of dark matter from A_4 flavor symmetry Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 037 - 20pp  
  Keywords Cosmology of Theories beyond the SM; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract We investigate a model in which Dark Matter is stabilized by means of a Z(2) parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed patter of neutrino mixing. In our A(4) example the standard model is extended by three extra Higgs doublets and the Z(2) parity emerges as a remnant of the spontaneous breaking of A(4) after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.  
  Address [Boucenna, M. S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291364300037 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 674  
Permanent link to this record
 

 
Author Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 142 - 18pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.  
  Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296086700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 817  
Permanent link to this record
 

 
Author Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J.W.F.; Vicente, A. url  doi
openurl 
  Title Bilinear R-parity violation with flavor symmetry Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 033 - 16pp  
  Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Discrete and Finite Symmetries  
  Abstract Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.  
  Address [Bazzocchi, F.] Int Sch Adv Studies SISSA, Trieste, Italy, Email: fbazzo@sissa.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315583200033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva