|   | 
Details
   web
Records
Author Dev, A.; Machado, P.A.N.; Martinez-Mirave, P.
Title Signatures of ultralight dark matter in neutrino oscillation experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 094 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study how neutrino oscillations could probe the existence of ultralight bosonic dark matter. Three distinct signatures on neutrino oscillations are identified, depending on the mass of the dark matter and the specific experimental setup. These are time modulation signals, oscillation probability distortions due to fast modulations, and fast varying matter effects. We provide all the necessary information to perform a bottom-up, model-independent experimental analysis to probe such scenarios. Using the future DUNE experiment as an example, we estimate its sensitivity to ultralight scalar dark matter. Our results could be easily used by any other oscillation experiment.
Address [Dev, Abhish] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA, Email: adev@umd.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640855200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4794
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F.
Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 249 - 21pp
Keywords Neutrino Physics; CP violation
Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000646917200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4814
Permanent link to this record
 

 
Author Felkl, T.; Herrero-Garcia, J.; Schmidt, M.A.
Title The singly-charged scalar singlet as the origin of neutrino masses Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 122 - 39pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We consider the generation of neutrino masses via a singly-charged scalar singlet. Under general assumptions we identify two distinct structures for the neutrino mass matrix. This yields a constraint for the antisymmetric Yukawa coupling of the singly-charged scalar singlet to two left-handed lepton doublets, irrespective of how the breaking of lepton-number conservation is achieved. The constraint disfavours large hierarchies among the Yukawa couplings. We study the implications for the phenomenology of lepton-flavour universality, measurements of the W-boson mass, flavour violation in the charged-lepton sector and decays of the singly-charged scalar singlet. We also discuss the parameter space that can address the Cabibbo Angle Anomaly.
Address [Felkl, Tobias; Schmidt, Michael A.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: t.felkl@unsw.edu.au;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000656967200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4851
Permanent link to this record
 

 
Author Masud, M.; Mehta, P.; Ternes, C.A.; Tortola, M.
Title Non-standard neutrino oscillations: perspective from unitarity triangles Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 171 - 19pp
Keywords Beyond Standard Model; CP violation; Neutrino Physics
Abstract We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in literature. We uncover some interesting dependencies on NSI terms while studying the evolution of LUT parameters and the Jarlskog invariant. Interestingly, the geometric approach based on LUT allows us to express the oscillation probabilities for a given pair of neutrino flavours in terms of only three (and not four) degrees of freedom which are related to the geometric properties (sides and angles) of the triangle. Moreover, the LUT parameters are invariant under rephasing transformations and independent of the parameterization adopted.
Address [Masud, Mehedi] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: masud@ibs.re.kr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000658364000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4864
Permanent link to this record
 

 
Author Beniwal, A.; Herrero-Garcia, J.; Leerdam, N.; White, M.; Williams, A.G.
Title The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 136 - 34pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.
Address [Beniwal, Ankit] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium, Email: ankit.beniwal@uclouvain.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000668611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4881
Permanent link to this record