toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 10 Pages 103534 - 7pp  
  Keywords  
  Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278146700047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 429  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Li, T.; Pascoli, S.; Mena, O. url  doi
openurl 
  Title Improvement of the low energy neutrino factory Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 7 Pages 073010 - 13pp  
  Keywords  
  Abstract The low energy neutrino factory has been proposed as a very sensitive setup for future searches for CP violation and matter effects. Here we study how its performance is affected when the experimental specifications of the setup are varied. Most notably, we have considered the addition of the “platinum'' nu(mu) -> nu(e) channel. We find that, while theoretically the extra channel provides very useful complementary information and helps to lift degeneracies, its practical usefulness is lost when considering realistic background levels. Conversely, an increase in statistics in the ”golden'' nu(mu) -> nu(e) channel and, to some extent, an improvement in the energy resolution, lead to an important increase in the performance of the facility, given the rich energy dependence of the "golden'' channel at these energies. We show that a low energy neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV, and either a 20 kton totally active scintillating detector or 100 kton liquid argon detector, can have outstanding sensitivity to the neutrino oscillation parameters theta(13), delta, and the mass hierarchy. For our estimated exposure of 2: 8 x 10(23) kton x decays per muon polarity, the low energy neutrino factory has sensitivity to theta(13) and delta for sin(2)(2 theta(13)) > 10(-4) and to the mass hierarchy for sin(2)(2 theta(13)) > 10(-3)  
  Address [Martinez, Enrique Fernandez] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: enfmarti@mppmu.mpg.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277201900018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 458  
Permanent link to this record
 

 
Author Giusarma, E.; Corsi, M.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.; Pandolfi, S. url  doi
openurl 
  Title Constraints on massive sterile neutrino species from current and future cosmological data Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 11 Pages 115023 - 10pp  
  Keywords  
  Abstract Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292039800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 660  
Permanent link to this record
 

 
Author De Bernardis, F.; Martinelli, M.; Melchiorri, A.; Mena, O.; Cooray, A. url  doi
openurl 
  Title Future weak lensing constraints in a dark coupled universe Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 2 Pages 023504 - 10pp  
  Keywords  
  Abstract Probing the dark matter clustering and its evolution with weak lensing surveys constitutes a unique tool to constrain interacting dark energy models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the expected results from the ongoing Planck cosmic microwave background satellite experiment. We find that these future data could constrain the dimensionless coupling between dark matter and dark energy to be smaller than a few x 10(-2), improving the CMB-only constraint by at least 2 orders of magnitude. We also show that coupled cosmologies can substantially alter the constraints on cosmological parameters obtained from CMB experiments under the assumption of noninteracting cosmologies unless weak lensing data is considered.  
  Address [De Bernardis, F; Cooray, A] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292515000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 681  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Rigolin, S. url  doi
openurl 
  Title Biases on cosmological parameters by general relativity effects Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 023511 - 12pp  
  Keywords  
  Abstract General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are not expected to affect the foreseen errors on the cosmological parameters nor to induce large biases on them.  
  Address [Lopez-Honorez, L.] Univ Libre Bruxelles, Serv Phys Theor, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298990300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 867  
Permanent link to this record
 

 
Author Martinelli, M.; Melchiorri, A.; Mena, O.; Salvatelli, V.; Girones, Z. url  doi
openurl 
  Title Future constraints on the Hu-Sawicki modified gravity scenario Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 024006 - 7pp  
  Keywords  
  Abstract We present current and future constraints on the Hu and Sawicki modified gravity scenario. This model can reproduce a late time accelerated universe and evade Solar System constraints. While current cosmological data still allows for distinctive deviations from the cosmological constant picture, future measurements of the growth of structure combined with supernova Ia luminosity distance data will greatly improve present constraints.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro; Salvatelli, Valentina] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298990200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 870  
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 083522 - 9pp  
  Keywords  
  Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Dark radiation in extended cosmological scenarios Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 4 Pages 043509 - 7pp  
  Keywords  
  Abstract Recent cosmological data have provided evidence for a “dark” relativistic background at high statistical significance. Parameterized in terms of the number of relativistic degrees of freedom N-eff, however, the current data seem to indicate a higher value than the one expected in the standard scenario based on three active neutrinos. This dark radiation component can be characterized not only by its abundance but also by its clustering properties, as its effective sound speed and its viscosity parameter. It is therefore crucial to study the correlations among the dark radiation properties and key cosmological parameters, as the dark energy equation of state or the running of the scalar spectral index, with current and future cosmic microwave background data. We find that dark radiation with viscosity parameters different from their standard values may be misinterpreted as an evolving dark energy component or as a running spectral index in the power spectrum of primordial fluctuations.  
  Address [Archidiacono, Maria; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307276500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1122  
Permanent link to this record
 

 
Author Giusarma, E.; de Putter, R.; Mena, O. url  doi
openurl 
  Title Testing standard and nonstandard neutrino physics with cosmological data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 4 Pages 043515 - 9pp  
  Keywords  
  Abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.  
  Address [Giusarma, Elena; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314765800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1326  
Permanent link to this record
 

 
Author Diamanti, R.; Giusarma, E.; Mena, O.; Archidiacono, M.; Melchiorri, A. url  doi
openurl 
  Title Dark radiation and interacting scenarios Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 6 Pages 063509 - 8pp  
  Keywords  
  Abstract An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of two larger when considering interacting scenarios. If future Cosmic Microwave Background data are analyzed assuming a noninteracting model but the dark radiation and the dark matter sectors interact in nature, the reconstructed values for the effective velocity and for the viscosity parameter will be shifted from their standard 1/3 expectation, namely c(eff)(2) = 0.34(-0.003)(+0.006) and c(vis)(2) = 0.29(-0.001)(+0.002) at 95% C.L. for the future COrE mission data.  
  Address [Diamanti, Roberta] Univ Roma Tre, Dept Phys, I-00146 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315739200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1349  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva