|   | 
Details
   web
Records
Author Bruschini, R.; Gonzalez, P.
Title Radiative decays in bottomonium beyond the long wavelength approximation Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 7 Pages 074001 - 13pp
Keywords
Abstract We revisit the nonrelativistic quark model description of electromagnetic radiative decays in bottomonium. We show that even for the simplest spectroscopic quark model the calculated widths can be in good agreement with data once the experimental masses of bottomonium states and the photon energy are properly implemented in the calculation. For transitions involving the lower lying spectral states this implementation can be easily done via the long wavelength approximation. For transitions where this approximation does not apply we develop a new method of implementing the experimental energy dependencies.
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000488508700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4164
Permanent link to this record
 

 
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E.
Title Dark sectors with dynamical coupling Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 8 Pages 083509 - 11pp
Keywords
Abstract Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489039100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4166
Permanent link to this record
 

 
Author Campanario, F.; Czyz, H.; Gluza, J.; Jelinski, T.; Rodrigo, G.; Tracz, S.; Zhuridov, D.
Title Standard model radiative corrections in the pion form factor measurements do not explain the a(mu) anomaly Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 7 Pages 076004 - 5pp
Keywords
Abstract In this paper, we address the question of whether the almost four standard deviations difference between theory and experiment for the muon anomalous magnetic moment a(mu) can be explained as a higher-order Standard Model perturbation effect in the pion form factor measurements. This question has, until now, remained open, obscuring the source of discrepancies between the measurements. We calculate the last radiative corrections for the extraction of the pion form factor, which were believed to be potentially substantial enough to explain the data within the Standard Model. We find that the corrections are too small to diminish existing discrepancies in the determination of the pion form factor for different kinematical configurations of low-energy BABAR, BES-III and KLOE experiments. Consequently, they cannot noticeably change the previous predictions for a(mu) and decrease the deviations between theory and direct measurements. To solve the above issues, new data and better understanding of low-energy experimental setups are needed, especially as new direct a(mu) measurements at Fermilab and J-PARC will provide new insights and substantially shrink the experimental error.
Address [Campanario, Francisco; Rodrigo, German; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: henryk.czyz@us.edu.pl
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489577800008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4168
Permanent link to this record
 

 
Author Wang, G.Y.; Roca, L.; Oset, E.
Title Discerning the two K-1 (1270) poles in D-0 -> pi(+) VP decay Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 7 Pages 074018 - 10pp
Keywords
Abstract Within the chiral unitary approach, the axial-vector resonance K-1 (1270) has been predicted to manifest a two-pole nature. The lowest pole has a mass of 1195 MeV and a width of 246 MeV and couples mostly to K*pi, and the highest pole has a mass of 1284 MeV and a width of 146 MeV and couples mostly to rho K. We analyze theoretically how this double-pole structure can show up in D-0 -> pi+VP decays by looking at the vector-pseudoscalar (VP) invariant mass distribution for different VP channels, exploiting the fact that each pole couples differently to different VP pairs. We find that the final (K) over bar*pi and rho(K) over tilde channels are sensible to the different poles of the K-1 (1270) resonance and hence are suitable reactions to analyze experimentally the double-pole nature of this resonance.
Address [Wang, G. Y.] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Henan, Peoples R China
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000490752100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4182
Permanent link to this record
 

 
Author Beltran-Palau, P.; Ferreiro, A.; Navarro-Salas, J.; Pla, S.
Title Breaking of adiabatic invariance in the creation of particles by electromagnetic backgrounds Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 8 Pages 085014 - 12pp
Keywords
Abstract Particles are spontaneously created from the vacuum by time-varying gravitational or electromagnetic backgrounds. It has been proven that the particle number operator in an expanding universe is an adiabatic invariant. In this paper we show that, in some special cases, the expected adiabatic invariance of the particle number fails in presence of electromagnetic backgrounds. In order to do this, we consider as a prototype a Sauter-type electric pulse. Furthermore, we also show a close relation between the breaking of the adiabatic invariance and the emergence of the axial anomaly.
Address [Beltran-Palau, Pau; Ferreiro, Antonio; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, CSIC, Ctr Mixto, Fac Fis,Dept Fis Teor, E-46100 Valencia, Spain, Email: pau.beltran@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000491467800009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4184
Permanent link to this record