|   | 
Details
   web
Records
Author Villaescusa-Navarro, F. et al; Villanueva-Domingo, P.
Title The CAMELS Project: Public Data Release Type Journal Article
Year 2023 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.
Volume 265 Issue 2 Pages 54 - 14pp
Keywords Cosmology; Hydrodynamical simulations; Astrostatistics; Galaxy formation
Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .
Address [Villaescusa-Navarro, Francisco; Genel, Shy; Angles-Alcazar, Daniel; Hassan, Sultan; Pisani, Alice; Wong, Kaze W. K.; Coulton, William R.; Steinwandel, Ulrich P.; Spergel, David N.; Burkhart, Blakesley; Wandelt, Benjamin; Somerville, Rachel S.; Bryan, Greg L.; Li, Yin] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA, Email: camel.simulations@gmail.com
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0067-0049 ISBN Medium
Area Expedition Conference
Notes WOS:000964876300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5525
Permanent link to this record
 

 
Author Candela-Juan, C.; Vijande, J.; Garcia-Martinez, T.; Niatsetski, Y.; Nauta, G.; Schuurman, J.; Ouhib, Z.; Ballester, F.; Perez-Calatayud, J.
Title Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry Type Journal Article
Year 2015 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 42 Issue 8 Pages 4954-4964
Keywords x-ray beams; electronic brachytherapy; surface applicators; dosimetry; uncertainty
Abstract Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate of the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%-2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.
Address [Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ, Dept Radiat Oncol, Valencia 46026, Spain, Email: ccanjuan@gmail.com
Corporate Author Thesis
Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000358933000051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2323
Permanent link to this record
 

 
Author Albiol, A.; Corbi, A.; Albiol, F.
Title Automatic intensity windowing of mammographic images based on a perceptual metric Type Journal Article
Year 2017 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 44 Issue 4 Pages 1369-1378
Keywords contrast stretching; Gabor filtering; human visual system; mammogram; mutual information; window level/width
Abstract Purpose: Initial auto-adjustment of the window level WL and width WW applied to mammographic images. The proposed intensity windowing (IW) method is based on the maximization of the mutual information (MI) between a perceptual decomposition of the original 12-bit sources and their screen displayed 8-bit version. Besides zoom, color inversion and panning operations, IW is the most commonly performed task in daily screening and has a direct impact on diagnosis and the time involved in the process. Methods: The authors present a human visual system and perception-based algorithm named GRAIL (Gabor-relying adjustment of image levels). GRAIL initially measures a mammogram's quality based on the MI between the original instance and its Gabor-filtered derivations. From this point on, the algorithm performs an automatic intensity windowing process that outputs the WL/WW that best displays each mammogram for screening. GRAIL starts with the default, high contrast, wide dynamic range 12-bit data, and then maximizes the graphical information presented in ordinary 8-bit displays. Tests have been carried out with several mammogram databases. They comprise correlations and an ANOVA analysis with the manual IW levels established by a group of radiologists. A complete MATLAB implementation of GRAIL is available at . Results: Auto-leveled images show superior quality both perceptually and objectively compared to their full intensity range and compared to the application of other common methods like global contrast stretching (GCS). The correlations between the human determined intensity values and the ones estimated by our method surpass that of GCS. The ANOVA analysis with the upper intensity thresholds also reveals a similar outcome. GRAIL has also proven to specially perform better with images that contain micro-calcifications and/or foreign X-ray-opaque elements and with healthy BI-RADS A-type mammograms. It can also speed up the initial screening time by a mean of 4.5 s per image. Conclusions: A novel methodology is introduced that enables a quality-driven balancing of the WL/WW of mammographic images. This correction seeks the representation that maximizes the amount of graphical information contained in each image. The presented technique can contribute to the diagnosis and the overall efficiency of the breast screening session by suggesting, at the beginning, an optimal and customized windowing setting for each mammogram.
Address [Albiol, Alberto] Univ Politecn Valencia, iTeam Res Inst, Valencia, Spain, Email: alberto.corbi@ific.uv.es
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000400572700016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3122
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 161 - 8pp
Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics
Abstract We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0103-9733 ISBN Medium
Area Expedition Conference
Notes WOS:001087936700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5766
Permanent link to this record
 

 
Author Koolen, B.B.; Vidal-Sicart, S.; Benlloch, J.M.; Olmos, R.A.V.
Title Evaluating heterogeneity of primary tumor 18 F-FDG uptake in breast cancer with a dedicated breast PET ( MAMMI): a feasibility study based on correlation with PET/CT Type Journal Article
Year 2014 Publication Nuclear Medicine Communications Abbreviated Journal Nucl. Med. Commun.
Volume 35 Issue 5 Pages 446-452
Keywords breast cancer; F-18-FDG; heterogeneity; MAMMI; PET
Abstract PurposeThe aim of the study was to evaluate the heterogeneity of primary tumor F-18-fluorodeoxyglucose (F-18-FDG) uptake in breast cancer patients using a dedicated breast PET.Patients and methodsA positron emission tomography/computed tomography (PET/CT) of the thorax was performed 60 min after administration of 180-240 MBq of F-18-FDG in patients with breast cancer. Subsequently, 110 min after injection, a scan was taken with a dedicated high-resolution breast PET [MAMmography with Molecular Imaging (MAMMI)]. Both procedures were performed with the patients in the prone position. Four-point scores were used to compare the intensity (0: none; 1: mild; 2: moderate; 3: high) and heterogeneity (0: none; 1: mild; 2: moderate; 3: high) of F-18-FDG uptake between PET/CT and MAMMI images.ResultsThirty-five patients in whom the primary tumor was visualized on both scans were included in this analysis. The mean primary tumor size was 35.1 mm (range 10-108 mm). The mean intensity score was similar on both devices (2.4 for PET/CT and 2.3 for MAMMI; P=0.439), but the mean heterogeneity score on MAMMI images was significantly higher (PET/CT 1.9 vs. MAMMI 2.3; P=0.005). MAMMI showed a higher heterogeneity score in 11 (31%) of 35 patients, especially in tumors with moderate or high intensity. Significantly higher heterogeneity scores on both PET/CT and MAMMI were seen in large tumors (P=0.005 and 0.014, respectively) and in tumors with high intensity scores (P=0.012 and P<0.001, respectively).ConclusionHeterogeneous tumor F-18-FDG uptake in breast cancer is frequently observed, particularly in large tumors with intense F-18-FDG uptake. It is more often seen on MAMMI PET than on conventional PET/CT. Although the observed heterogeneity should be proven histopathologically, this finding offers a rationale for F-18-FDG-guided biopsies.
Address [Koolen, Bas B.; Vidal-Sicart, Sergi; Olmos, Renato A. Valdes] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Nucl Med, NL-1066 CX Amsterdam, Netherlands, Email: b.koolen@nki.nl
Corporate Author Thesis
Publisher Lippincott Williams & Wilkins Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0143-3636 ISBN Medium
Area Expedition Conference
Notes WOS:000334103800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1763
Permanent link to this record