|   | 
Details
   web
Records
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P.
Title Search for neutral-current induced single photon production at the ND280 near detector in T2K Type Journal Article
Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 46 Issue 8 Pages 08LT01 - 16pp
Keywords T2K; neutrino; neutrino oscillation; neutrino interaction; Mini-BooNE; CP violation
Abstract Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.
Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000518888100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4318
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Pure glueball states in a light-front holographic approach Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 5 Pages 055104 - 12pp
Keywords glueball; meson; spectrum; mixing; AdS; CFT
Abstract A phenomenological analysis of the scalar glueball and scalar meson spectra is carried out by using the AdS/QCD framework in the bottom-up approach. The resulting spectra are in good agreement for glueballs with lattice QCD results and for mesons with PDG data. We make use of the relation between the mode functions in AdS/QCD and the wave functions in Light-Front QCD to discuss the mixing of glueballs and mesons. The results of our investigation point out that above 2 GeV scalar particles will appear in almost degenerate pairs of unmixed glueball and mesons states leading to an interesting phenomenology whereby gluon dynamics could be well investigated.
Address [Rinaldi, Matteo] Univ Perugia, Dipartimento Fis & Geol, Via A Pascoli, I-06123 Perugia, Italy, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000521463800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4338
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F.
Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 1 Pages 010501 - 114pp
Keywords beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators
Abstract The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.
Address [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000521343200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4341
Permanent link to this record
 

 
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 7 Pages 075001 - 17pp
Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators
Abstract Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.
Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000537753800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4423
Permanent link to this record
 

 
Author Khosa, C.K.; Mars, L.; Richards, J.; Sanz, V.
Title Convolutional neural networks for direct detection of dark matter Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages 095201 - 20pp
Keywords dark matter; dark matter detection; neural networks; xenon1T; WIMPs
Abstract The XENON1T experiment uses a time projection chamber (TPC) with liquid xenon to search for weakly interacting massive particles (WIMPs), a proposed dark matter particle, via direct detection. As this experiment relies on capturing rare events, the focus is on achieving a high recall of WIMP events. Hence the ability to distinguish between WIMP and the background is extremely important. To accomplish this, we suggest using convolutional neural networks (CNNs); a machine learning procedure mainly used in image recognition tasks. To explore this technique we use XENON collaboration open-source software to simulate the TPC graphical output of dark matter signals and main backgrounds. A CNN turns out to be a suitable tool for this purpose, as it can identify features in the images that differentiate the two types of events without the need to manipulate or remove data in order to focus on a particular region of the detector. We find that the CNN can distinguish between the dominant background events (ER) and 500 GeV WIMP events with a recall of 93.4%, precision of 81.2% and an accuracy of 87.2%.
Address [Khosa, Charanjit K.; Mars, Lucy; Richards, Joel; Sanz, Veronica] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England, Email: charanjit.kaur@sussex.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000555607800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4485
Permanent link to this record
 

 
Author Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A.
Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages 090501 - 226pp
Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000570614200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4535
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Scalar spectrum in a graviton soft wall model Type Journal Article
Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 12 Pages 125003 - 16pp
Keywords glueball; meson; spectrum; AdS; CFT
Abstract In this study we present a unified phenomenological analysis of the scalar glueball and scalar meson spectra within an AdS/QCD framework in the bottom up approach. For this purpose we generalize the recently developed graviton soft-wall (GSW) model, which has shown an excellent agreement with the lattice QCD glueball spectrum, to a description of glueballs and mesons with a unique energy scale. In this scheme, dilatonic effects, are incorporated in the metric as a deformation of the AdS space. We apply the model also to the heavy meson spectra with success. We obtain quadratic mass equations for all scalar mesons while the glueballs satisfy an almost linear mass equation. Besides their spectra, we also discuss the mixing of scalar glueball and light scalar meson states within a unified framework: the GSW model. To this aim, the light-front (LF) holographic approach, which connects the mode functions of AdS/QCD to the LF wave functions, is applied. This relation provides the probabilistic interpretation required to properly investigate the mixing conditions.
Address [Rinaldi, Matteo] Univ Perugia, INFN, Dipartimento Fis & Geol, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000584306700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4587
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S.
Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 48 Issue 11 Pages 110501 - 364pp
Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics
Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000731762500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5067
Permanent link to this record
 

 
Author Abraham, R.M. et al; Garcia Soto, A.
Title Tau neutrinos in the next decade: from GeV to EeV Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue 11 Pages 110501 - 148pp
Keywords tau neutrinos; neutrino experiments; tau neutrino theory
Abstract Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Address [Abraham, Roshan Mammen; Ismail, Ahmed] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA, Email: pdenton@bnl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000865870700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5377
Permanent link to this record
 

 
Author PANDA Collaboration (Davi, F. et al); Diaz, J.
Title Technical design report for the endcap disc DIRC Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue 12 Pages 120501 - 128pp
Keywords technical design report; particle identification; Cherenkov detector; PANDA
Abstract PANDA (anti-proton annihiliation at Darmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2 x 10(32) cm(-2) s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5 degrees to 22 degrees and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA disc DIRC detector that has not been used in any other high energy physics experiment before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees sufficient safety margins.
Address [Davi, F.] Univ Politecn Marche Ancona, Ancona, Italy, Email: muschmidt@uni-wuppertal.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000928188400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5476
Permanent link to this record