toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mena, O.; Razzaque, S. url  doi
openurl 
  Title Hints of an axion-like particle mixing in the GeV gamma-ray blazar data? Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 023 - 12pp  
  Keywords axions; active galactic nuclei  
  Abstract Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 – 3).10(-7) eV and coupling g(a gamma) similar to (1 – 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media.  
  Address [Mena, Olga] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1673  
Permanent link to this record
 

 
Author Diamanti, R.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title Constraining dark matter late-time energy injection: decays and p-wave annihilations Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 017 - 24pp  
  Keywords dark matter theory; CMBR theory  
  Abstract We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z less than or similar to 50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-alpha measurements of the matter temperature at z similar to 4 to set a 95% confidence level lower bound on the dark matter lifetime of similar to 4 x 10(25) s for m(chi) = 100 MeV. This bound becomes lower by an order of magnitude at m(chi) = 1 TeV due to inefficient energy deposition into the inter-galactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.  
  Address [Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: R.Diamanti@uva.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332711400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1732  
Permanent link to this record
 

 
Author Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M. url  doi
openurl 
  Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 006 - 23pp  
  Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM  
  Abstract We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).  
  Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355742500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2261  
Permanent link to this record
 

 
Author Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Boehm, C. url  doi
openurl 
  Title Exploring dark matter microphysics with galaxy surveys Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 034 - 16pp  
  Keywords dark matter theory; galaxy surveys; cosmological parameters from CMBR  
  Abstract We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ACDM scenario. To quantify this statement, we focus on an extension of ACDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.  
  Address [Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: miguel.Escudero@uv.s;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365690000034 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2480  
Permanent link to this record
 

 
Author Escudero, M.; Ramirez, H.; Boubekeur, L.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title The present and future of the most favoured inflationary models after Planck 2015 Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 020 - 21pp  
  Keywords inflation; cosmological parameters from CMBR; CMBR experiments  
  Abstract The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, alpha(s) and the running thereof, beta(s). If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for beta(s) greater than or similar to 10(-2) as the preferred one, it will be possible to rule-out the most favoured inflationary models.  
  Address [Escudero, Miguel; Ramirez, Hector; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372467600021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2590  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Moline, A.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 004 - 40pp  
  Keywords dark matter theory; intergalactic media; reionization  
  Abstract Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.  
  Address [Lopez-Honorez, Laura] Vrije Univ Brussel, Theoret Natuurkunde, Pl Laan 2, B-1050 Brussels, Belgium, Email: llopezho@vub.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389859100050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2899  
Permanent link to this record
 

 
Author Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C. url  doi
openurl 
  Title Cold dark matter plus not-so-clumpy dark relics Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 008 - 17pp  
  Keywords cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection  
  Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.  
  Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403482400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3174  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Gariazzo, S.; Gnedin, N.Y.; Mena, O. url  doi
openurl 
  Title Was there an early reionization component in our universe? Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 024 - 17pp  
  Keywords cosmological parameters from CMBR; reionization  
  Abstract A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between z similar or equal to 6 and z similar or equal to 20, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth tau.  
  Address [Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: pablo.villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429339200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3555  
Permanent link to this record
 

 
Author Ramirez, H.; Passaglia, S.; Motohashi, H.; Hu, W.; Mena, O. url  doi
openurl 
  Title Reconciling tensor and scalar observables in G-inflation Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 039 - 20pp  
  Keywords inflation; cosmological parameters from CMBR  
  Abstract The simple m(2)phi(2) potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index n(s). Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt alpha(s) that can be of order n(s) – 1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on vertical bar alpha(s)vertical bar place a lower bound of r greater than or similar to 0.005 and, conversely, a given r places a lower bound on vertical bar alpha(s)vertical bar, both of which are potentially observable with next generation CMB and large scale structure surveys.  
  Address [Ramirez, Hector] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: hector.ramirez@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429895200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3557  
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P. url  doi
openurl 
  Title A fresh look into the interacting dark matter scenario Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 007 - 35pp  
  Keywords particle physics – cosmology connection; dwarfs galaxies; reionization; dark matter theory  
  Abstract The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter photon elastic scattering cross section of sigma gamma DM < 8 x 10(-10) sigma(T) (m(DM)/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.  
  Address [Escudero, Miguel; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434381500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3612  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva