toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Updating neutrino magnetic moment constraints Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 753 Issue Pages 191-198  
  Keywords  
  Abstract In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.  
  Address [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368783600029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2551  
Permanent link to this record
 

 
Author Cañas, B.C.; Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title The weak mixing angle from low energy neutrino measurements: A global update Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 450-455  
  Keywords  
  Abstract Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024.  
  Address [Canas, B. C.; Miranda, O. G.] Ctr Invest Estudios Avanzados IPN, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900064 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2940  
Permanent link to this record
 

 
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 778 Issue Pages 459-463  
  Keywords  
  Abstract Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.  
  Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426436700063 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3512  
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrinos, DUNE and the world best bound on CPT invariance Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 780 Issue Pages 631-637  
  Keywords Neutrino mass and mixing; Neutrino oscillation; CPT  
  Abstract CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3 sigma. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Delta(Delta m(31)(2)) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.  
  Address [Barenboim, G.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432187800085 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3620  
Permanent link to this record
 

 
Author de Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Status of neutrino oscillations 2018: 3 sigma hint for normal mass ordering and improved CP sensitivity Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 782 Issue Pages 633-640  
  Keywords Neutrino mass and mixing; Neutrino oscillation; Solar and atmospheric neutrinos; Reactor and accelerator neutrinos; Neutrino telescopes  
  Abstract We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis[1]. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NO nu A, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Delta chi(2)= 1.6 (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase delta in the range [pi, 2 pi], excluding values close to pi/2at more than 4 sigma. More remarkably, our global analysis shows a hint in favorof the normal mass ordering over the inverted one at more than 3 sigma. We discuss in detail the status of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples.  
  Address [de Salas, P. F.; Ternes, C. A.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438486900094 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3665  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva