MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Musumeci, E., Papavassiliou, J., Ruiz de Austri, R., Staelens, M., et al. (2024). MoEDAL Search in the CMS Beam Pipe for Magnetic Monopoles Produced via the Schwinger Effect. Phys. Rev. Lett., 133(7), 071803–7pp.
Abstract: We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb-Pb collisions during Run 1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 μb-1 – 1 of Pb-Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. It was scanned by the MoEDAL experiment using a SQUID magnetometer to search for trapped MMs. No MM signal was observed. The two distinctive features of this search are the use of a trapping volume very close to the collision point and ultrahigh magnetic fields generated during the heavy-ion run that could produce MMs via the Schwinger effect. These two advantages allowed setting the first reliable, world-leading mass limits on MMs with high magnetic charge. In particular, the established limits are the strongest available in the range between 2 and 45 Dirac units, excluding MMs with masses of up to 80 GeV at a 95% confidence level.
|
MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Musumeci, E., Papavassiliou, J., Ruiz de Austri, R., Staelens, M., et al. (2025). Search for Highly Ionizing Particles in pp Collisions during LHC Run 2 Using the Full MoEDAL Detector. Phys. Rev. Lett., 134(7), 071802–8pp.
Abstract: This search for magnetic monopoles (MMs) and high electric charge objects (HECOs) with spins 0, 1/2, and 1, uses for the first time the full MoEDAL detector, exposed to 6.46 fb(-1) proton-proton collisions at 13 TeV. The results are interpreted in terms of Drell-Yan and photon-fusion pair production. Mass limits on direct production of MMs of up to 10 Dirac magnetic charges and HECOs with electric charge in the range 10e to 400e, were achieved. The charge limits placed on MM and HECO production are currently the strongest in the world. MoEDAL is the only LHC experiment capable of being directly calibrated for highly ionizing particles using heavy ions and with a detector system dedicated to definitively measuring magnetic charge.
|
Fanchiotti, H., Garcia Canal, C. A., Mayosky, M., Veiga, A., & Vento, V. (2023). The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems. Braz. J. Phys., 53(6), 143–11pp.
Abstract: The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
|
Garcia Canal, C. A., Tarutina, T., & Vento, V. (2023). Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei. Braz. J. Phys., 53(6), 161–8pp.
Abstract: We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
|
Mantovani-Sarti, V., Drago, A., Vento, V., & Park, B. Y. (2013). The Baryon Number Two System in the Chiral Soliton Model. Few-Body Syst., 54(1-4), 513–516.
Abstract: We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
|