|   | 
Details
   web
Records
Author Wang, Y.F.; Yao, D.L.; Zheng, H.Q.
Title New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 43 Issue 6 Pages 064110 - 22pp
Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory
Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.
Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000468501700013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4020
Permanent link to this record
 

 
Author Li, H.P.; Yi, J.Y.; Xiao, C.W.; Yao, D.L.; Liang, W.H.; Oset, E.
Title Correlation function and the inverse problem in the BD interaction Type Journal Article
Year 2024 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 48 Issue 5 Pages 053107 - 7pp
Keywords meson-meson interaction; correlation function; BD system; scattering observables
Abstract We study the correlation functions of the (BD+)-D-0, (B+D0) system, which develops a bound state of approximately 40MeV, using inputs consistent with the T-cc(3875) state. Then, we address the inverse problem starting from these correlation functions to determine the scattering observables related to the system, including the existence of the bound state and its molecular nature. The important output of the approach is the uncertainty with which these observables can be obtained, considering errors in the (BD+)-D-0, (B+D0) correlation functions typical of current values in correlation functions. We find that it is possible to obtain scattering lengths and effective ranges with relatively high precision and the existence of a bound state. Although the pole position is obtained with errors of the order of 50% of the binding energy, the molecular probability of the state is obtained with a very small error of the order of 6%. All these findings serve as motivation to perform such measurements in future runs of high energy hadron collisions.
Address [Li, Hai-Peng; Xiao, Chu-Wen; Liang, Wei-Hong; Oset, Eulogio] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: xiaochw@gxnu.edu.cn;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:001205326100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6110
Permanent link to this record
 

 
Author Wang, Y.F.; Yao, D.L.; Zheng, H.Q.
Title On the existence of N*(890) resonance in S-11 channel of N scatterings Type Journal Article
Year 2019 Publication Frontiers of Physics Abbreviated Journal Front. Phys.
Volume 14 Issue 2 Pages 24501 - 6pp
Keywords dispersion relations; N scatterings; nucleon resonance
Abstract Low-energy partial-wave N scattering data is reexamined with the help of the production representation of partial-wave S matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of O(p(3)) chiral perturbative amplitudes obtained in the extended-onmass- shell scheme. In S-11 and P-11 channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a S-11 resonance pole locates at zr = (0:895-0:081)-(0:164-0:023)i GeV, on the complex s-plane. On the other hand, a P-11 virtual pole, as an accompanying partner of the nucleon bound-state pole, locates atzv = (0:966-0:018) GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the O(p(3)) calculation greatly improves the fit quality comparing with the previous O(p(2)) one.
Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: deliang.yao@ific.uv.es
Corporate Author Thesis
Publisher Higher Education Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2095-0462 ISBN Medium
Area Expedition Conference
Notes WOS:000454564100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3857
Permanent link to this record
 

 
Author Yao, D.L.; Alvarez-Ruso, L.; Vicente Vacas, M.J.
Title Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 11 Pages 116022 - 11pp
Keywords
Abstract We calculate the nucleon axial form factor up to the leading one-loop order in a covariant chiral effective field theory with the Delta(1232) resonance as an explicit degree of freedom. We fit the axial form factor to the latest lattice QCD data and pin down the relevant low-energy constants. The lattice QCD data, for various pion masses below 400 MeV, can be well described up to a momentum transfer of similar to 0.6 GeV. The Delta(1232) loops contribute significantly to this agreement. Furthermore, we extract the axial charge and radius based on the fitted values of the low-energy constants. The results are g(A) = 1.237(74) and < r(A)(2)> = 0.263(38) fm(2). The obtained coupling g(A) is consistent with the experimental value if the uncertainty is taken into account. The axial radius is below but in agreement with the recent extraction from neutrino quasielastic scattering data on deuterium, which has large error bars. Up to our current working accuracy, r(A) is predicted only at leading order, i.e., the one-loop level. A more precise determination might need terms of O(p(5)).
Address [Yao, De-Liang] CSIC, Ctr Mixto UVEG, Dept Fis Teor, E-46071 Valencia, Spain, Email: deliang.yao@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000418917900010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3437
Permanent link to this record
 

 
Author Yao, D.L.
Title Masses and sigma terms of doubly charmed baryons up to O(p(4)) in manifestly Lorentz-invariant baryon chiral perturbation theory Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 3 Pages 034012 - 12pp
Keywords
Abstract We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-toleading order [i.e., O(p(4))] in a covariant baryon chiral perturbation theory by using the extended-on-mass-shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the existing lattice QCD data in the presence of finite-volume corrections. Up to O(p(3)), all relevant low-energy constants can be well determined. As a consequence, we obtain the physical values for the masses of Xi(cc) and Omega(cc) baryons by extrapolating to the physical limit. Our determination of the Xi(cc) mass is consistent with the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as the mass splitting between the Xi(cc) and Omega(cc) states. Their quark mass dependences are also discussed. The numerical procedure can be applied to the chiral results of O(p(4)) order, where more unknown constants are involved, when more data are available for unphysical pion masses.
Address [Yao, De-Liang] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: Deliang.Yao@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000424747400004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3487
Permanent link to this record