|   | 
Details
   web
Records
Author Cannoni, M.; Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R.
Title Supersymmetry searches in GUT models with non-universal scalar masses Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 041 - 23pp
Keywords particle physics – cosmology connection; supersymmetry and cosmology
Abstract We study SO(10). SU(5) and flipped SU(5) GUT models with non-universal soft supersynrimetry-breaking scalar masses, exploring how they are constrained by LIIC super-synrimetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the-various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of (t) over tilde (1-chi) coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E-T, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CIA gamma-ray searches.
Address [Cannoni, M.; Gomez, M. E.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain, Email: mirco.ccannoni@dfa.uhu.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000375608200043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2674
Permanent link to this record
 

 
Author Ellis, J.; Konoplich, R.; Mavromatos, N.E.; Nguyen, L.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K.
Title Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 8 Pages 083009 - 22pp
Keywords
Abstract Models of quantum gravity suggest that the vacuum should be regarded as a medium with quantum structure that may have nontrivial effects on photon propagation, including the violation of Lorentz invariance. Fermi Large Area Telescope (LAT) observations of gamma-ray bursts (GRBs) are sensitive probes of Lorentz invariance, via studies of energy-dependent timing shifts in their rapidly varying photon emissions. We analyze the Fermi-LAT measurements of high-energy gamma rays from GRBs with known redshifts, allowing for the possibility of energy-dependent variations in emission times at the sources as well as a possible nontrivial refractive index in vacuo for photons. We use statistical estimators based on the irregularity, kurtosis, and skewness of bursts that are relatively bright in the 100 MeV to multi-GeV energy band to constrain possible dispersion effects during propagation. We find that the energy scale characterizing a linear energy dependence of the refractive index should exceed a few x10(17) GeV, and we estimate the sensitivity attainable with additional future sources to be detected by Fermi-LAT.
Address [Ellis, John; Mavromatos, Nikolaos E.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000464745800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3982
Permanent link to this record