Fanchiotti, H., Garcia Canal, C. A., Mayosky, M., Veiga, A., & Vento, V. (2023). The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems. Braz. J. Phys., 53(6), 143–11pp.
Abstract: The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
|
Garcia Canal, C. A., Tarutina, T., & Vento, V. (2023). Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei. Braz. J. Phys., 53(6), 161–8pp.
Abstract: We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
|
Aguilar, A. C. et al, Cieri, L., & Miramontes, A. (2025). Latin American Strategy Forum for Research Infrastructure (III LASF4RI Contribution). Braz. J. Phys., 55(4), 145–17pp.
Abstract: The Electron-Ion Collider (EIC), a next generation electron-hadron and electron-nuclei scattering facility, will be built at Brookhaven National Laboratory. The wealth of new data will shape research in hadron physics, from nonperturbative QCD techniques to perturbative QCD improvements and global QCD analyses, for the decades to come. With the present proposal, Latin America based physicists, whose expertise lies on the theory and phenomenology side, make the case for the past and future efforts of a growing community, working hand-in-hand towards developing theoretical tools and predictions to analyze, interpret, and optimize the results that will be obtained at the EIC, unveiling the role of the glue that binds us all. This effort is along the lines of various initiatives taken in the USA and supported by colleagues worldwide, such as the ones by the EIC User Group which were highlighted during the Snowmass Process and the Particle Physics Project Prioritization Panel (P5).
|
Martin-Luna, P., Gimeno, B., Gonzalez-Iglesias, D., Boronat, M., Fuster-Martinez, N., Martinez-Reviriego, P., et al. (2024). On the magnetostatic scalar potential and magnetic field of a cylindrical magnet. Eur. J. Phys., 45(6), 065203–15pp.
Abstract: The magnetostatic potential and magnetic field of a solid and hollow cylindrical magnet is calculated everywhere in space in terms of complete elliptic integrals. These expressions are calculated using an electromagnetic analogy with the electrostatic potential and electric field of two uniformly charged disks with opposite surface density. The analogy is employed to study intuitively the discontinuities and the dipolar approximation of the fields (H) over right arrow and (B) over right arrow. The range of validity of the dipolar approximation has been studied along the cylinder axis and in the midplane perpendicular to the cylinder axis, comparing them with the obtained general expression.
|
PTOLEMY Collaboration(Betti, M. G. et al), de Salas, P. F., Gariazzo, S., & Pastor, S. (2019). A design for an electromagnetic filter for precision energy measurements at the tritium endpoint. Prog. Part. Nucl. Phys., 106, 120–131.
Abstract: We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems. (C) 2019 Elsevier B.V. All rights reserved.
|
Davesne, D., Pastore, A., & Navarro, J. (2021). Linear response theory with finite-range interactions. Prog. Part. Nucl. Phys., 120, 103870–55pp.
Abstract: This review focuses on the calculation of infinite nuclear matter response functions using phenomenological finite-range interactions, equipped or not with tensor terms. These include Gogny and Nakada families, which are commonly used in the literature. Because of the finite-range, the main technical difficulty stems from the exchange terms of the particle-hole interaction. We first present results based on the so-called Landau and Landau-like approximations of the particle-hole interaction. Then, we review two methods which in principle provide numerically exact response functions. The first one is based on a multipolar expansion of both the particle-hole interaction and the particle-hole propagator and the second one consists in a continued fraction expansion of the response function. The numerical precision can be pushed to any degree of accuracy, but it is actually shown that two or three terms suffice to get converged results. Finally, we apply the formalism to the determination of possible finite-size instabilities induced by a finite-range interaction.
|
Pich, A. (2021). Precision physics with inclusive QCD processes. Prog. Part. Nucl. Phys., 117, 103846–41pp.
Abstract: The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for very precise tests of Quantum Chromodynamics. The theoretical predictions for sigma(e(+)e(-) -> hadrons) and the hadronic decay widths of the tau lepton and the Z, W and Higgs bosons have reached an impressive accuracy of O(alpha(4)(s)). Precise experimental measurements of the Z and tau hadronic widths have made possible the accurate determination of the strong coupling at two very different energy scales, providing a highly significant experimental verification of asymptotic freedom. A detailed discussion of the theoretical description of these processes and their current phenomenological status is presented. The most precise determinations of alpha(s) from other sources are also briefly reviewed and compared with the fully-inclusive results.
|
Addazi, A. et al, Martinez-Mirave, P., Mitsou, V. A., Palomares-Ruiz, S., Tortola, M., & Zornoza, J. D. (2022). Quantum gravity phenomenology at the dawn of the multi-messenger era-A review. Prog. Part. Nucl. Phys., 125, 103948–119pp.
Abstract: The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
|
Albaladejo, M., Bibrzycki, L., Dawid, S. M., Fernandez-Ramirez, C., Gonzalez-Solis, S., Hiller Blin, A. N., et al. (2022). Novel approaches in hadron spectroscopy. Prog. Part. Nucl. Phys., 127, 103981–75pp.
Abstract: The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.
|
Nieves, J., Feijoo, A., Albaladejo, M., & Du, M. L. (2024). Lowest-lying 1/2- and 3/2- ΛQ resonances: From the strange to the bottom sectors. Prog. Part. Nucl. Phys., 137, 104118–23pp.
Abstract: We present a detailed study of the lowest-lying 1/2(-) and 3/2(-) Lambda Q resonances both in the heavy 2 2 quark (bottom and charm) and the strange sectors. We have paid special attention to the interplay between the constituent quark-model and chiral baryon-meson degrees of freedom, which are coupled using a unitarized scheme consistent with leading-order heavy quark symmetries. We show that the Lambda(b)(5912) [J(P) = 1/2(-)], Lambda(b)(5920) [J(P) = 3/2(-)] and the Lambda(c)(2625) [J(P) = 3/2-], and the Lambda(1520) [J(P) = 3/2(-)] admitting larger breaking corrections, are heavyquark spin-flavor siblings. They can be seen as dressed quark-model states with Sigma Q(()*()) pi molecular components of the order of 30%. The J(P)=1(-) Lambda(2595) has, however, a higher molecular 2 probability of at least 50%, and even values greater than 70% can be easily accommodated. This is because it is located almost on top of the threshold of the Sigma(c)pi pair, which largely influences its properties. Although the light degrees of freedom in this resonance would be coupled to spin-parity 1(-) as in the Lambda(b)(5912), Lambda(b)(5920) and Lambda(c)(2625), the Lambda(c)(2595) should not be considered as a heavy-quark spin-flavor partner of the former ones. We also show that the Lambda(1405) chiral two-pole pattern does not have analogs in the 1 – charmed and bottomed sectors, because the 2 N D-(*()) and N (B) over bar (()*()) channels do not play for heavy quarks the decisive role that the N (K) over bar does in the strange sector, and the notable influence of the bare quark-model states for the charm and bottom resonances. Finally, we predict the existence of two Lambda(b)(6070) and two Lambda(c)(2765) heavy-quark spin and flavor sibling odd parity states.
|