|   | 
Details
   web
Records
Author Liptak, Z. et al; Marinas, C.
Title Measurements of beam backgrounds in SuperKEKB Phase 2 Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1040 Issue Pages 167168 - 19pp
Keywords
Abstract The high design luminosity of the SuperKEKB electron–positron collider will result in challenging levels of beam-induced backgrounds in the interaction region. Understanding and mitigating these backgrounds is critical to the success of the Belle II experiment. We report on the first background measurements performed after roll-in of the Belle II detector, a period known as SuperKEKB Phase 2, utilizing both the BEAST II system of dedicated background detectors and the Belle II detector itself. We also report on first revisions to the background simulation made in response to our findings. Backgrounds measured include contributions from synchrotron radiation, beam-gas, Touschek, and injection backgrounds. At the end of Phase 2, single-beam backgrounds originating from the 4 GeV positron Low Energy Ring (LER) agree reasonably well with simulation, while backgrounds from the 7 GeV electron High Energy Ring (HER) are approximately one order of magnitude higher than simulation. We extrapolate these backgrounds forward and conclude it is safe to install the Belle II vertex detector.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5496
Permanent link to this record
 

 
Author Middeldorf-Wygas, M.M.; Oldengott, I.M.; Bödeker, D.; Schwarz, D.J.
Title Cosmic QCD transition for large lepton flavor asymmetries Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue Pages 123533 - 10pp
Keywords
Abstract We study the impact of large lepton flavor asymmetries on the cosmic QCD transition. Scenarios of unequal lepton flavor asymmetries are observationally almost unconstrained and therefore open up a whole new parameter space for the cosmic QCD transition. We find that for large asymmetries, the formation of a Bose-Einstein condensate of pions can occur and identify the corresponding parameter space. In the vicinity of the QCD transition scale, we express the pressure in terms of a Taylor expansion with respect to the complete set of chemical potentials. The Taylor coefficients rely on input from lattice QCD calculations from the literature. The domain of applicability of this method is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5497
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.
Title Search for a New B-L Z' Gauge Boson with the NA64 Experiment at CERN Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 129 Issue Pages 161801 - 6pp
Keywords
Abstract A search for a new Z′ gauge boson associated with (un)broken B−L symmetry in the keV–GeV mass range is carried out for the first time using the missing-energy technique in the NA64 experiment at the CERN SPS. From the analysis of the data with 3.22×10^11 electrons on target collected during 2016–2021 runs, no signal events were found. This allows us to derive new constraints on the Z′−e coupling strength, which, for the mass range 0.3≲ mZ′≲ 100  MeV, are more stringent compared to those obtained from the neutrino-electron scattering data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5499
Permanent link to this record
 

 
Author Garcia Navarro, J.E.; Fernandez-Prieto, L.M.; Villaseñor, A.; Sanz, V.; Ammirati, J.B.; Diaz Suarez, E.A.; Garcia, C.
Title Performance of Deep Learning Pickers in Routine Network Processing Applications Type Journal Article
Year 2022 Publication Seismological Research Letters Abbreviated Journal Seismol. Res. Lett.
Volume 93 Issue Pages 2529-2542
Keywords
Abstract Picking arrival times of P and S phases is a fundamental and time‐consuming task for the routine processing of seismic data acquired by permanent and temporary networks. A large number of automatic pickers have been developed, but to perform well they often require the tuning of multiple parameters to adapt them to each dataset. Despite the great advance in techniques, some problems remain, such as the difficulty to accurately pick S waves and earthquake recordings with a low signal‐to‐noise ratio. Recently, phase pickers based on deep learning (DL) have shown great potential for event identification and arrival‐time picking. However, the general adoption of these methods for the routine processing of monitoring networks has been held back by factors such as the availability of well‐documented software, computational resources, and a gap in knowledge of these methods. In this study, we evaluate recent available DL pickers for earthquake data, comparing the performance of several neural network architectures. We test the selected pickers using three datasets with different characteristics. We found that the analyzed DL pickers (generalized phase detection, PhaseNet, and EQTransformer) perform well in the three tested cases. They are very efficient at ignoring large‐amplitude transient noise and at picking S waves, a task that is often difficult even for experienced analysts. Nevertheless, the performance of the analyzed DL pickers varies widely in terms of sensitivity and false discovery rate, with some pickers missing a significant percentage of true picks and others producing a large number of false positives. There are also variations in run time between DL pickers, with some of them requiring significant resources to process large datasets. In spite of these drawbacks, we show that DL pickers can be used efficiently to process large seismic datasets and obtain results comparable or better than current standard procedures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5500
Permanent link to this record
 

 
Author Ferreira, M.N.; Papavassiliou, J.
Title Gauge Sector Dynamics in QCD Type Journal Article
Year 2023 Publication Particles Abbreviated Journal Particles
Volume 6 Issue 1 Pages 312-363
Keywords continuum Schwinger function methods; emergence of hadron mass; gluon mass generation; lattice QCD; non-perturbative quantum field theory; quantum chromodynamics; Schwinger-Dyson equations; Schwinger mechanism
Abstract The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.
Address [Ferreira, Mauricio Narciso; Papavassiliou, Joannis] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: ansonar@uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes WOS:000959126400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5504
Permanent link to this record