|   | 
Details
   web
Records
Author Vento, V.
Title Skyrmions at high density Type Journal Article
Year 2017 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E
Volume 26 Issue 1-2 Pages 1740029 - 15pp
Keywords Quark; pion; Skyrmion; dilation
Abstract The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark-gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.
Address [Vento, Vicente] Univ Valencia CSIC, Dept Fis Teor, C Dr Moliner,50, E-46100 Valencia, Spain, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0218-3013 ISBN Medium
Area Expedition Conference
Notes WOS:000395110800033 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2994
Permanent link to this record
 

 
Author Mantovani-Sarti, V.; Park, B.Y.; Vento, V.
Title The Soliton-Soliton Interaction in the Chiral Dilaton Model Type Journal Article
Year 2013 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 28 Issue 27 Pages 1350136 - 19pp
Keywords Nontopological solitons; chiral symmetry; scale invariance; dense matter
Abstract We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the pi and sigma fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
Address [Mantovani-Sarti, Valentina] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy, Email: smantovani@fe.infn.it
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000326625700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1641
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O.
Title The physics programme of the MoEDAL experiment at the LHC Type Journal Article
Year 2014 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 29 Issue 23 Pages 1430050 - 91pp
Keywords MoEDAL; LHC magnetic monopole; monopolium; dyons; (pseudo-)stable massive charged particle; supersymmetry; technicolor; extra dimensions; dark matter; doubly charged particles; highly ionizing particles; physics beyond the Standard Model
Abstract The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: jpinfold@ualberta.ca
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000342220300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1950
Permanent link to this record
 

 
Author Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.Y.
Title The Baryon Number Two System in the Chiral Soliton Model Type Journal Article
Year 2013 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 54 Issue 1-4 Pages 513-516
Keywords
Abstract We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
Address [Mantovani-Sarti, Valentina; Drago, Alessandro] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy, Email: smantovani@fe.infn.it;
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000314063300099 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1325
Permanent link to this record
 

 
Author Rinaldi, M.; Scopetta, S.; Traini, M.; Vento, V.
Title Double Parton Distributions in Light-Front Constituent Quark Models Type Journal Article
Year 2015 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 56 Issue 6-9 Pages 515-521
Keywords
Abstract Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton-nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model results has been performed in the valence sector, showing that, in some cases, the effect of evolution does not cancel that of correlations.
Address [Rinaldi, Matteo; Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, I-06100 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000360435800042 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2370
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Mayosky, M.; Veiga, A.; Vento, V.
Title The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems Type Journal Article
Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 143 - 11pp
Keywords Geometrical phases; Decomplexification; Resonat circuit; Gyrator
Abstract The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
Address [Fanchiotti, H.; Canal, C. A. Garcia] Univ Nacl La Plata, FLP CONICET, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0103-9733 ISBN Medium
Area Expedition Conference
Notes WOS:001058597300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5627
Permanent link to this record
 

 
Author Garcia Canal, C.A.; Tarutina, T.; Vento, V.
Title Analysis of Nuclear Effects in Structure Functions and Their Connection with the Binding Energy of Nuclei Type Journal Article
Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 161 - 8pp
Keywords Structure functions; Deep inelastic scattering; EMC effect; Nuclear dynamics
Abstract We describe nuclear effects in structure functions of nuclei in DIS by means of a multiplicative factor beta(A)(x) which differentiates the structure function of the bound nucleons from that of the free nucleons. Our analysis determines that beta(A)(x) establishes a relation between the quark-gluon dynamics expressed by the bound nucleon structure functions and the nuclear dynamics as described by the well-known semi-empirical Bethe-Weizsacker mass formula. This relation corroborates a connection between the underlying quark-gluon dynamics and the phenomenological nuclear dynamics.
Address [Canal, C. A. Garcia] Univ La Plata, Dept Phys, Cc 67, RA-1900 La Plata, Argentina, Email: ttarutina@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0103-9733 ISBN Medium
Area Expedition Conference
Notes WOS:001087936700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5766
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; Mamuzic, J.; Mitsou, V.A.; Ruiz de Austri, R.; Vento, V.; Vives, O.
Title Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 6 Pages 061801 - 6pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000393747300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2969
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 2 Pages 021802 - 7pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Baines, S.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: vasiliki.mitsou@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000474894200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4077
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title First Search for Dyons with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 7 Pages 071801 - 7pp
Keywords
Abstract The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g(D)) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g(D) with mass limits in the range 870-2040 GeV.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England, Email: jpinfold@ualberta.ca
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000620021300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4723
Permanent link to this record