ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). Study of High-Transverse-Momentum Higgs Boson Production in Association with a Vector Boson in the qqbb Final State with the ATLAS Detector. Phys. Rev. Lett., 132(13), 131802–23pp.
Abstract: This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in ffiffiproton-proton collisions at root root s= 13 TeV and corresponding to an integrated luminosity of 137fb(-1). The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into b (b) over bar. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ= 1.4(-0.9)(+1.0) and the corresponding cross section is 3.1 +/- 1.3(stat)(-1.4)(+1.8) (syst) pb.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Amplitude Analysis of the B0 -> K*0 μ+μ- Decay. Phys. Rev. Lett., 132(13), 131801–13pp.
Abstract: An amplitude analysis of the B-0 -> K*(0) mu(+)mu(-) decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q(2)-unbinned amplitude analysis, where q(2) is the mu(+)mu(-) invariant mass squared. Long-distance contributions, which originate from nonfactorizable QCD processes, are systematically investigated, and the most accurate assessment to date of their impact on the physical observables is obtained. The pattern of measured corrections to the short-distance couplings is found to be consistent with previous analyses of b- to s-quark transitions, with the largest discrepancy from the standard model predictions found to be at the level of 1.8 standard deviations. The global significance of the observed differences in the decay is 1.4 standard deviations.
|
NA64 Collaboration(Andreev, Y. M. et al), Molina Bueno, L., & Tuzi, M. (2024). First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam. Phys. Rev. Lett., 132(21), 211803–7pp.
Abstract: We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum < 80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98 +/- 0.02) x 10(10) muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m(Z)'; g(Z)') parameter space of a new Z' (L-mu – L-tau) vector boson which could explain the muon (g – 2)(mu) anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.
|
Jungclaus, A. et al, Gadea, A., & Montaner-Piza, A. (2024). Excited-State Half-Lives in 130 Cd and the Isospin Dependence of Effective Charges. Phys. Rev. Lett., 132(22), 222501–7pp.
Abstract: The known I pi = 8 & thorn; 1 , E x = 2129-keV isomer in the semimagic nucleus 130 Cd 82 was populated in the projectile fission of a 238 U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E x = 2001.2(7) keV, and half-life, T 1 =2 = 57(3) ns, of the I pi = 6 & thorn; 1 state based on gamma gamma coincidence information. Furthermore, the halflife of the 8 & thorn; 1 state, T 1 =2 = 224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for 134 Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for 132 Sn, a doubly magic nucleus far -off stability. A comparison to analogous information for 100 Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.
|
Du, M. L., Filin, A., Baru, V., Dong, X. K., Epelbaum, E., Guo, F. K., et al. (2023). Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+. Phys. Rev. Lett., 131(13), 131903–7pp.
Abstract: We discuss recent lattice data for the T-cc(3875)(+) state to stress, for the first time, a potentially strong impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states. In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in the DD* system for the pion mass exceeding its physical value, the effective-range expansion is valid only in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an accurate extraction of the pole locations requires the one-pion exchange to be implemented explicitly into the scattering amplitudes. Our findings are general and potentially relevant for a wide class of hadronic near-threshold states.
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., Cabrera Urban, S., et al. (2023). Measurement of Suppression of Large-Radius Jets and Its Dependence on Substructure in Pb plus Pb Collisions at √sNN=5.02 TeV with the ATLAS Detector. Phys. Rev. Lett., 131(17), 172301–22pp.
Abstract: This letter presents a measurement of the nuclear modification factor of large-radius jets in root s(NN) = 5.02 TeV Pb thorn Pb collisions by the ATLAS experiment. The measurement is performed using 1.72 nb(-1) and 257 pb(-1) of Pb thorn Pb and pp data, respectively. The large-radius jets are reconstructed with the anti-kt algorithm using a radius parameter of R = 1.0, by reclustering anti-k(t) R = 0.2 jets, and are measured over the transverse momentum (p(T)) kinematic range of 158 < p(T) < 1000 GeV and absolute pseudorapidity |y| < 2.0. The large-radius jet constituents are further reclustered using the k(t) algorithm in order to obtain the splitting parameters, root d(12) and Delta R-12, which characterize the transverse momentum scale and angular separation for the hardest splitting in the jet, respectively. The nuclear modification factor, R-AA, obtained by comparing the Pb thorn Pb jet yields to those in pp collisions, is measured as a function of jet transverse momentum (p(T)) and root d(12) or Delta R-12. A significant difference in the quenching of large-radius jets having single subjet and those with more complex substructure is observed. Systematic comparison of jet suppression in terms of R-AA for different jet definitions is also provided. Presented results support the hypothesis that jets with hard internal splittings lose more energy through quenching and provide a new perspective for understanding the role of jet structure in jet suppression.
|
Figueroa, D. G., Pieroni, M., Ricciardone, A., & Simakachorn, P. (2024). Cosmological Background Interpretation of Pulsar Timing Array Data. Phys. Rev. Lett., 132(17), 171002–9pp.
Abstract: We discuss the interpretation of the detected signal by pulsar timing array (PTA) observations as a gravitational wave background of cosmological origin. We combine NANOGrav 15-years and EPTADR2new datasets and confront them against backgrounds from supermassive black hole binaries (SMBHBs), and cosmological signals from inflation, cosmic (super)strings, first-order phase transitions, Gaussian and non-Gaussian large scalar fluctuations, and audible axions. We find that scalar-induced, and to a lesser extent audible axion and cosmic superstring signals, provide a better fit than SMBHBs. These results depend, however, on modeling assumptions, so further data and analysis are needed to reach robust conclusions. Independently of the signal origin, the data strongly constrain the parameter space of cosmological signals, for example, setting an upper bound on primordial non-Gaussianity at PTA scales as jfnlj less than or similar to 2.34 at 95% C.L.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for Rare Decays of D0 Mesons into Two Muons. Phys. Rev. Lett., 131(4), 041804–13pp.
Abstract: A search for the very rare D-0 -> mu(+)mu(-) decay is performed using data collected by the LHCb experiment in proton-proton collisions at root s = 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb(-1). The search is optimized for D-0 mesons from D*(+) -> D-0 pi(+) decays but is also sensitive to D-0 mesons from other sources. No evidence for an excess of events over the expected background is observed. An upper limit on the branching fraction of this decay is set at B(D-0 -> mu(+)mu(-)) < 3.1 x 10(-9) at a 90% C.L. This represents the world's most stringent limit, constraining models of physics beyond the standard model.
|
Yeung, T. T. et al, Morales, A. I., Tain, J. L., Alcala, G., Algora, A., Agramunt, J., et al. (2024). First Exploration of Monopole-Driven Shell Evolution above the N=126 Shell Closure: New Millisecond Isomers in Tl-213 and Tl-215. Phys. Rev. Lett., 133(7), 072501–7pp.
Abstract: Isomer spectroscopy of heavy neutron-rich nuclei beyond the N = 126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in Tl-213 and 874(5) keV in Tl-215. The measured half-lives of 1.34(5) ms in Tl-213 and 3.0(3) ms in Tl-215 suggest spins and parities 11/2(-) with the single proton-hole configuration pi h(11/2) as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2(+), interpreted as arising from a single pi s(1/2) proton hole coupled to the 8(+) seniority isomer in the PbA + 1 cores. The lowering of the 11/2(-) states is ascribed to an increase of the pi h(11/2) proton effective single-particle energy as the second nu g(9/2) orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the pi h(11/2) and nu g(9/2) orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N > 126 nuclear region below doubly magic Pb-208.
|
Casanovas-Hoste, A. et al, Domingo-Pardo, C., Lerendegui-Marco, J., Tarifeño-Saldivia, A., & Tain, J. L. (2024). Shedding Light on the Origin of Pb-204, the Heaviest s-Process-Only Isotope in the Solar System. Phys. Rev. Lett., 133(5), 052702–8pp.
Abstract: Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of (204) Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, 204 Tl ( t( 1/2)=2 1 / 4 3.78 . 78 yr), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on (204) Tl, conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of 204 Tl produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s-process temperatures of kT approximate to 8 keV and kT approximate to 30 keV, Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new Tl-204 MACS, the uncertainty arising from the( 204) Tl ( n ; gamma) cross section on the s-process abundance of Pb-204 has been reduced from similar to 30% down to & thorn;8%= = – 6% , and the s-process calculations are in agreement with the latest solar system abundance of Pb-204 reported by K. Lodders in 2021.
|