toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author AbdusSalam, S.S. et al; Eberhardt, O. url  doi
openurl 
  Title Simple and statistically sound recommendations for analysing physical theories Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 5 Pages 052201 - 11pp  
  Keywords particle physics; statistics; methodology  
  Abstract Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.  
  Address [AbdusSalam, Shehu S.; Fowlie, Andrew] Shahid Beheshti Univ, Dept Phys, Tehran, Iran, Email: andrew.j.fowlie@njnu.edu.cn  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791574900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5221  
Permanent link to this record
 

 
Author Kogler, R.; Nachman, B.; Schmidt, A.; Asquith, L.; Winkels, E.; Campanelli, M.; Delitzsch, C.; Harris, P.; Hinzmann, A.; Kar, D.; McLean, C.; Pilot, J.; Takahashi, Y.; Tran, N.; Vernieri, C.; Vos, M. url  doi
openurl 
  Title Jet substructure at the Large Hadron Collider Type Journal Article
  Year 2019 Publication Reviews of Modern Physics Abbreviated Journal Rev. Mod. Phys.  
  Volume 91 Issue 4 Pages 045003 - 44pp  
  Keywords  
  Abstract Jet substructure has emerged to play a central role at the Large Hadron Collider, where it has provided numerous innovative ways to search for new physics and to probe the standard model, particularly in extreme regions of phase space. This review focuses on the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments.  
  Address [Kogler, Roman; Hinzmann, Andreas] Univ Hamburg, Hamburg, Germany, Email: roman.kogler@uni-hamburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0034-6861 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505698100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4238  
Permanent link to this record
 

 
Author de Azcarraga, J.A. doi  openurl
  Title The new Spanish educational legislation: why public education will not improve Type Journal Article
  Year 2022 Publication Revista Española de Pedagogía Abbreviated Journal Rev. Esp. Pedagog.  
  Volume 80 Issue 281 Pages 111-129  
  Keywords Forthcoming Spanish educational legislation; primary school; secondary education; universities  
  Abstract This paper provides some reasons that explain, in the view of the author, why the present eagerness of the Spanish Educational Authorities to reform all levels of education, from primary school to the universities, will not improve the quality of the Spanish educational system.  
  Address [Adolfo de Azcarraga, Jose] Univ Valencia, Fis Teor, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es  
  Corporate Author Thesis  
  Publisher Univ Int Rioja-Unir Place of Publication Editor  
  Language Spanish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0034-9461 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000752024500007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5125  
Permanent link to this record
 

 
Author ANTARES Collaboration (Bhandari, S. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up Type Journal Article
  Year 2018 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 475 Issue 2 Pages 1427-1446  
  Keywords radiation mechanisms: general; methods: data analysis; methods: observational; surveys; intergalactic medium; radio continuum: general  
  Abstract We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 +/- 0.3 pc cm(-3)) detected to date. Three of the FRBs have high dispersion measures (DM > 1500 pc cm(-3)), favouring a scenario where the DMis dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences > 2 Jy ms is alpha = – 2.2(-1.2)(+0.6) and still consistent with a Euclidean distribution (alpha = -3/2). We also find that the all-sky rate is 1.7(-0.9)(+1.5) x 10(3)FRBs/(4 pi sr)/day above similar to 2 Jy ms and there is currently no strong evidence for a latitude- dependent FRB sky rate.  
  Address [Bhandari, S.; Keane, E. F.; Barr, E. D.; Jameson, A.; Petroff, E.; Bailes, M.; Flynn, C.; Jankowski, F.; Krishnan, V. Venkatraman; Morello, V.; van Straten, W.; Andreoni, I.; Cooke, J.; Pritchard, T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Mail H30,POB 218, Hawthorn, Vic 3122, Australia, Email: shivanibhandari58@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427345900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3518  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 482 Issue 1 Pages 184-193  
  Keywords acceleration of particles; neutrinos; astroparticle physics; radio continuum: transients; methods: data analysis  
  Abstract In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called fast radio bursts (FRBs) is still a mystery, despite the growing observational efforts made by various multiwavelength and multimessenger facilities. To date, many models have been proposed to explain FRBs, but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, we assess whether hadronic processes may occur in the vicinity of the FRB source. If they do, FRBs may contribute to the high-energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures was carried out using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, that are spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs were selected and no coincident neutrino candidate was observed. Upper limits on the per-burst neutrino fluence were derived using a power-law spectrum, dN/DE nu proportional to E-nu(-gamma), for the incoming neutrino flux, assuming spectral indexes gamma = 1.0, 2.0, 2.5. Finally, the neutrino energy was constrained by computing the total energy radiated in neutrinos, assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released were derived from the associated null results.  
  Address [Turpin, D.] Chinese Acad Sci, Natl Astron Observ, Key Lab Space Astron & Technol, Beijing 100101, Peoples R China, Email: dornic@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454575300014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3860  
Permanent link to this record
 

 
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. url  doi
openurl 
  Title Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 493 Issue 1 Pages 1139-1152  
  Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe  
  Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518156100081 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4320  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perucho, M.; Marti, J.M.; Laing, R.A. url  doi
openurl 
  Title On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 1 Pages 1512-1530  
  Keywords relativistic processes; stars: winds; outflows; galaxies: active; galaxies: jets  
  Abstract In this paper, we present steady-state relativistic magnetohydrodynamic simulations that include a mass-load term to study the process of jet deceleration. The mass load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from 10(-14) to 10(-9) M-circle dot yr(-1). The spatial jet evolution covers similar to 500 pc from jet injection in the grid at 10 pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetized jets. Our results show that toroidal magnetic fields can prevent fast jet expansion and the subsequent embedding of further stars via magnetic tension. In this sense, magnetic fields avoid a runaway deceleration process. Furthermore, when the mass load is large enough to increase the jet density and produce fast, differential jet expansion, the conversion of magnetic energy flux into kinetic energy flux (i.e. magnetic acceleration), helps to delay the deceleration process with respect to non-magnetized jets. We conclude that the typical stellar population in elliptical galaxies cannot explain jet deceleration in classical Fanaroff-Riley type I radio galaxies. However, we observe a significant change in the jet composition, thermodynamical parameters, and energy dissipation along its evolution, even for moderate values of the mass load.  
  Address [Angles-Castillo, Andreu; Perucho, Manel; Maria Marti, Jose] Univ Valencia, Dept Astron & Astrofis, C Dr Moline 50, E-46100 Valencia, Spain, Email: manel.perucho@uv.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599134600112 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4644  
Permanent link to this record
 

 
Author Di Valentino, E.; Mena, O. url  doi
openurl 
  Title A fake interacting dark energy detection? Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 1 Pages L22-L26  
  Keywords cosmic background radiation; cosmological parameters; dark energy  
  Abstract Models involving an interaction between the dark matter and the dark energy sectors have been proposed to alleviate the long-standing Hubble constant tension. In this paper, we analyse whether the constraints and potential hints obtained for these interacting models remain unchanged when using simulated Planck data. Interestingly, our simulations indicate that a dangerous fake detection for a non-zero interaction among the dark matter and the dark energy fluids could arise when dealing with current cosmic microwave background (CMB) Planck measurements alone. The very same hypothesis is tested against future CMB observations, finding that only cosmic variance limited polarization experiments, such as PICO or PRISM, could be able to break the existing parameter degeneracies and provide reliable cosmological constraints. This paper underlines the extreme importance of confronting the results arising from data analyses with those obtained with simulations when extracting cosmological limits within exotic cosmological scenarios.  
  Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599143200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4665  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 4 Pages 5614-5628  
  Keywords acceleration of particles; neutrinos; transients: gamma-ray bursts; astroparticle physics  
  Abstract Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p gamma interactions. In this work, ANTARFS data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 percent.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: silvia.celli@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606297700092 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4677  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva