|   | 
Details
   web
Records
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Measurement of top quark polarization in top-antitop events from proton-proton collisions at root s=7 TeV using the ATLAS detector Type Journal Article
Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 111 Issue 23 Pages 232002 - 19pp
Keywords
Abstract This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4: 7 fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at root s = 7 TeV. Final states containing one or two isolated leptons ( electrons or muons) and jets are considered. Two measurements of alpha P-l, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, alpha P-l(CPC) = -0: 035 +/- 0: 014(stat) +/- 0: 037(syst) and alpha P-l(CPV) = 0: 020 +/- 0: 016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quark polarization.
Address [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000328616300013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1677
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Rafecas, M.
Title Simulated one-pass list-mode: an approach to on-the-fly system matrix calculation Type Journal Article
Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 58 Issue 7 Pages 2377-2394
Keywords
Abstract In the development of prototype systems for positron emission tomography a valid and robust image reconstruction algorithm is required. However, prototypes often employ novel detector and system geometries which may change rapidly under optimization. In addition, developing systems generally produce highly granular, or possibly continuous detection domains which require some level of on-the-fly calculation for retention of measurement precision. In this investigation a new method of on-the-fly system matrix calculation is proposed that provides advantages in application to such list-mode systems in terms of flexibility in system modeling. The new method is easily adaptable to complicated system geometries and available computational resources. Detection uncertainty models are used as random number generators to produce ensembles of possible photon trajectories at image reconstruction time for each datum in the measurement list. However, the result of this approach is that the system matrix elements change at each iteration in a non-repetitive manner. The resulting algorithm is considered the simulation of a one-pass list (SOPL) which is generated and the list traversed during image reconstruction. SOPL alters the system matrix in use at each iteration and so behavior within the maximum likelihood-expectation maximization algorithm was investigated. A two-pixel system and a small two dimensional imaging model are used to illustrate the process and quantify aspects of the algorithm. The two-dimensional imaging system showed that, while incurring a penalty in image resolution, in comparison to a non-random equal-computation counterpart, SOPL provides much enhanced noise properties. In addition, enhancement in system matrix quality is straightforward (by increasing the number of samples in the ensemble) so that the resolution penalty can be recovered when desired while retaining improvement in noise properties. Finally the approach is tested and validated against a standard (highly accurate) system matrix using experimental data from a prototype system-the AX-PET.
Address [Gillam, J. E.; Solevi, P.; Oliver, J. F.; Rafecas, M.] Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: john.gillam@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000316181300024 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1370
Permanent link to this record
 

 
Author Robert, C.; Dedes, G.; Battistoni, G.; Bohlen, T.T.; Buvat, I.; Cerutti, F.; Chin, M.P.W.; Ferrari, A.; Gueth, P.; Kurz, C.; Lestand, L.; Mairani, A.; Montarou, G.; Nicolini, R.; Ortega, P.G.; Parodi, K.; Prezado, Y.; Sala, P.R.; Sarrut, D.; Testa, E.
Title Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes Type Journal Article
Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 58 Issue 9 Pages 2879-2899
Keywords
Abstract Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of O-16 and C-12. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.
Address Univ Paris 07, IMNC, CNRS, UMR 8165, F-91406 Orsay, France, Email: robert@imnc.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000317579900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1407
Permanent link to this record
 

 
Author Solevi, P. et al; Oliver, J.F.; Gillam, J.E.; Rafecas, M.
Title A Monte-Carlo based model of the AX-PET demonstrator and its experimental validation Type Journal Article
Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 58 Issue 16 Pages 5495-5510
Keywords
Abstract AX-PET is a novel PET detector based on axially oriented crystals and orthogonal wavelength shifter (WLS) strips, both individually read out by silicon photo-multipliers. Its design decouples sensitivity and spatial resolution, by reducing the parallax error due to the layered arrangement of the crystals. Additionally the granularity of AX-PET enhances the capability to track photons within the detector yielding a large fraction of inter-crystal scatter events. These events, if properly processed, can be included in the reconstruction stage further increasing the sensitivity. Its unique features require dedicated Monte-Carlo simulations, enabling the development of the device, interpreting data and allowing the development of reconstruction codes. At the same time the non-conventional design of AX-PET poses several challenges to the simulation and modeling tasks, mostly related to the light transport and distribution within the crystals and WLS strips, as well as the electronics readout. In this work we present a hybrid simulation tool based on an analytical model and a Monte-Carlo based description of the AX-PET demonstrator. It was extensively validated against experimental data, providing excellent agreement.
Address [Solevi, P.; Oliver, J. F.; Gillam, J. E.; Rafecas, M.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: paola.solevi@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000322775300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1544
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A.
Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 431 Issue 4 Pages 3670-3677
Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe
Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.
Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000319479000057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1458
Permanent link to this record