|   | 
Details
   web
Records
Author Gomis, P.; Perez, A.
Title Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 94 Issue 1 Pages 012103 - 11pp
Keywords
Abstract We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.
Address [Gomis, P.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Pablo.Gomis@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000378909000003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2739
Permanent link to this record
 

 
Author Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F.
Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 94 Issue 1 Pages 012335 - 6pp
Keywords
Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.
Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000380095000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2761
Permanent link to this record
 

 
Author Bru, L.A.; de Valcarcel, G.J.; Di Molfetta, G.; Perez, A.; Roldan, E.; Silva, F.
Title Quantum walk on a cylinder Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 94 Issue 3 Pages 032328 - 7pp
Keywords
Abstract We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or “hidden” extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.
Address [Bru, Luis A.] Univ Politecn Valencia, ITEAM Res Inst, Opt & Quantum Commun Grp, Camino Vera S-N, E-46022 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000384060700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2823
Permanent link to this record
 

 
Author Xie, J.J.; Oset, E.; Geng, L.S.
Title Photoproduction of the f(2)'(1525), a(2)(1320), and K-2(*) (1430) Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 2 Pages 025202 - 8pp
Keywords
Abstract Assuming that the f(2)'(1525), a(2)(1320), and K-2(*) (1430) resonances are dynamically generated states from vector-meson-vector-meson interactions in the s-wave with spin S = 2, we study the gamma p -> f(2)'(1525)p, gamma p -> a(2)(0)(1320)p, and gamma p -> K-2(*)(1430)Lambda(Sigma) reactions. These reactions proceed in the following way: the incoming photon first mutates into a rho(0), omega, or phi meson via vector-meson dominance, which then interacts with the rho(0), omega, or K* emitted by the incoming proton to form the tensor mesons f(2)(')(1525), a(2)(1320), and K-2(*)(1430). The picture is simple and has no free parameters, as all the parameters of the mechanism have been fixed in previous studies. We predict the differential and total cross sections of these reactions. The results can be tested in future experiments and therefore offer new clues about the nature of these tensor states.
Address [Xie, Ju-Jun; Oset, E.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China, Email: lisheng.geng@buaa.edu.cn
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000369729400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2557
Permanent link to this record
 

 
Author n_TOF Collaboration (Diakaki, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title Neutron-induced fission cross section of Np-237 in the keV to MeV range at the CERN n_TOF facility Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 3 Pages 034614 - 12pp
Keywords
Abstract The neutron-induced fission cross section of Np-237 was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.
Address [Diakaki, M.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France, Email: maria.diakaki@cea.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000372415600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2591
Permanent link to this record