|   | 
Details
   web
Records
Author NEXT Collaboration (Navarro, K.E. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title A compact dication source for Ba2+ tagging and heavy metal ion sensor development Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 7 Pages P07044 - 19pp
Keywords Beam Optics; Heavy-ion detectors; Ion identification systems; Ion sources (positive ions; negative ions; electron cyclotron resonance (ECR); electron beam (EBIS))
Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+ ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+ and Cd2+ also demonstrated for this purpose.
Address [Navarro, K. E.; Baeza-Rubio, J.; Giri, S.; Jones, B. J. P.; Nygren, D. R.; Samaniego, F. J.; Stogsdill, K.; Tiscareno, M. R.; Byrnes, N.; Dey, E.; Mistry, K.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001106703500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5860
Permanent link to this record
 

 
Author NEXT Collaboration (Mistry, K. et al); Carcel, S.; Lopez-March, N.; Martin-Albo, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A.
Title Design, characterization and installation of the NEXT-100 cathode and electroluminescence regions Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02007 - 36pp
Keywords Detector design and construction technologies and materials; Double-beta decay detectors; Charge transport; multiplication and electroluminescence in rare gases and liquids; Time projection Chambers (TPC)
Abstract NEXT -100 is currently being constructed at the Laboratorio Subterraneo de Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg of xenon. Charge amplification is carried out via electroluminescence (EL) which is the process of accelerating electrons in a high electric field region causing secondary scintillation of the medium proportional to the initial charge. The NEXT -100 EL and cathode regions are made from tensioned hexagonal meshes of 1 m diameter. This paper describes the design, characterization, and installation of these parts for NEXT -100. Simulations of the electric field are performed to model the drift and amplification of ionization electrons produced in the detector under various EL region alignments and rotations. Measurements of the electrostatic breakdown voltage in air characterize performance under high voltage conditions and identify breakdown points. The electrostatic deflection of the mesh is quantified and fit to a first -pr inciples mechanical model. Measurements were performed with both a standalone test EL region and with the NEXT-100 EL region before its installation in the detector. Finally, we describe the parts as installed in NEXT-100, following their deployment in Summer 2023.
Address [Mistry, K.; Jones, B. J. P.; Munson, B.; Norman, L.; Oliver, D.; Pingulkar, S.; Rodriguez-Tiscareno, M.; Silva, K.; Stogsdill, K.; Byrnes, N.; Dey, E.; Navarro, K. E.; Nygren, D. R.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: next-src@pegaso.ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6071
Permanent link to this record
 

 
Author Andreotti, M. et al; Cervera-Villanueva, A.; Garcia-Peris, M. a.; Martin-Albo, J.; Querol, M.; Rocabado, J.; Saadana, A.
Title Cryogenic characterization of Hamamatsu HWB MPPCs for the DUNE photon detection system Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 1 Pages T01007 - 27pp
Keywords Cryogenic detectors; Photon detectors for UV, visible and IR photons (solid-state); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)
Abstract The Deep Underground Neutrino Experiment (DUNE) is a next generation experiment aimed to study neutrino oscillation. Its long-baseline configuration will exploit a Near Detector (ND) and a Far Detector (FD) located at a distance of similar to 1300 km. The FD will consist of four Liquid Argon Time Projection Chamber (LAr TPC) modules. A Photon Detection System (PDS) will be used to detect the scintillation light produced inside the detector after neutrino interactions. The PDS will be based on light collectors coupled to Silicon Photomultipliers (SiPMs). Different photosensor technologies have been proposed and produced in order to identify the best samples to fullfill the experiment requirements. In this paper, we present the procedure and results of a validation campaign for the Hole Wire Bonding (HWB) MPPCs samples produced by Hamamatsu Photonics K.K. (HPK) for the DUNE experiment, referring to them as 'SiPMs'. The protocol for a characterization at cryogenic temperature (77 K) is reported. We present the down-selection criteria and the results obtained during the selection campaign undertaken, along with a study of the main sources of noise of the SiPMs including the investigation of a newly observed phenomenon in this field.
Address [de Souza, H. Vieira] Univ Paris Cite, Lab Astroparticule & Cosmol, APC, Paris, France, Email: elisabetta.montagna@bo.infn.it
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001178134800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6072
Permanent link to this record
 

 
Author NEXT Collaboration (Gomez-Cadenas, J.J. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Present Status and Future Perspectives of the NEXT Experiment Type Journal Article
Year 2014 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.
Volume 2014 Issue Pages 907067 - 22pp
Keywords
Abstract NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the Xe-136 isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.
Address [Gomez Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Hindawi Publishing Corporation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1687-7357 ISBN Medium
Area Expedition Conference
Notes WOS:000333620700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1745
Permanent link to this record
 

 
Author Bayes, R.; Laing, A.; Soler, F.J.P.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Hernandez, P.; Martin-Albo, J.; Burguet-Castell, J.
Title Golden channel at a neutrino factory revisited: Improved sensitivities from a magnetized iron neutrino detector Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 9 Pages 093015 - 27pp
Keywords
Abstract This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new, more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low-energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the 10(-4) level. Signal efficiency plateaus of similar to 60% for nu(mu) and similar to 70% for (nu) over bar (mu) events were achieved starting at similar to 5 GeV. Contamination from the nu(mu) -> nu(tau) oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a Magnetised Iron Neutrino Detector detector of 100 ktons at 2000 km from the Neutrino Factory is calculated for the case of sin(2)2 theta(13) similar to 10(-1). For this value of theta(13), the accuracy in the measurement of the CP-violating phase is estimated to be Delta delta(CP) similar to 3 degrees-5 degrees, depending on the value of delta(CP), the CP coverage at 5 sigma is 85% and the mass hierarchy would be determined with better than 5 sigma level for all values of delta(CP).
Address [Bayes, R.; Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000310868700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1224
Permanent link to this record
 

 
Author Hamacher-Baumann, P.; Lu, X.G.; Martin-Albo, J.
Title Neutrino-hydrogen interactions with a high-pressure time projection chamber Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 3 Pages 033005 - 15pp
Keywords
Abstract We investigate the idea of detecting pure neutrino-hydrogen interactions in a multinuclear target using the transverse kinematic imbalance technique [Lu et al., Phys. Rev. D 92, 051302 (2015)] in a high-pressure time projection chamber (HPTPC). With full solid-angle acceptance, MeV-level proton tracking threshold, state-of-the-art tracking resolution, and an 0(100 m(3)) gas volume at 10 bar, an HPTPC could provide an opportunity to realize this technique. We propose the use of hydrogen-rich gases in the TPC to achieve high detection purity with a large hydrogen mass. With the projected neutrino beam exposure at the DUNE experiment, neutrino-hydrogen events of the order of 10(4) per year with purity above 90% could be achieved with such an HPTPC using methane gas. In this paper, we present a systematic study of the event rate and purity for a variety of argon-alkanc mixtures, and examine these gas candidates for the TPC tracking-related properties.
Address [Hamacher-Baumann, Philip] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany, Email: hamacher.baumann@physik.rwth-aachen.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000562630500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4512
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A.
Title Sense and sensitivity of double beta decay experiments Type Journal Article
Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 007 - 30pp
Keywords double beta decay; neutrino experiments; neutrino properties
Abstract The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m(beta beta). In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a “physics-motivated range” (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and beta beta isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-136-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Munoz, J.] CSIC, IFIC, Valencia 46071, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000292332400007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 675
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.
Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 037 - 17pp
Keywords neutrino experiments; double beta decay
Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000301176000038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 987
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author Bernal, N.; Martin-Albo, J.; Palomares-Ruiz, S.
Title A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 011 - 19pp
Keywords dark matter theory; neutrino detectors; neutrino experiments
Abstract Annihilation of dark matter particles accumulated in the Sun would produce a flux of high-energy neutrinos whose prospects of detection in neutrino telescopes and detectors have been extensively discussed in the literature. However, for annihilations into Standard Model particles, there would also be a flux of neutrinos in the MeV range from the decays at rest of muons and positively charged pions. These low-energy neutrinos have never been considered before and they open the possibility to also constrain dark matter annihilation in the Sun into e(+)e(-), mu(+)mu(-) or light quarks. Here we perform a detailed analysis using the recent Super-Kamiokande data in the few tens of MeV range to set limits on the WIMP-nucleon scattering cross section for different annihilation channels and computing the evaporation rate of WIMPs from the Sun for all values of the scattering cross section in a consistent way.
Address [Bernal, Nicolas] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany, Email: nicolas@th.physik.uni-bonn.de;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000324032800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1584
Permanent link to this record