toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barrientos, L.; Borja-Lloret, M.; Etxebeste, A.; Muñoz, E.; Oliver, J.F.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G. doi  openurl
  Title Performance evaluation of MACACO II Compton camera Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages 165702 - 7pp  
  Keywords Compton camera; Hadron therapy; LaBr3; Silicon photomultipliers  
  Abstract The IRIS group at IFIC-Valencia has developed a second version of a Compton camera prototype for hadron therapy treatment monitoring, with the aim of improving the performance with respect to its predecessor. The system is composed of three Lanthanum (III) bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs). The detector energy resolution has been improved to 5.6% FWHM at 511 keV and an angular resolution of 8.0 degrees has been obtained. Images of a Na-22 point-like source have been reconstructed selecting two and three interaction events. Moreover, the experimental data have been reproduced with Monte Carlo simulations using a Compton camera module (CCMod) in GATE v8.2 obtaining a good correlation.  
  Address [Barrientos, L.; Borja-Lloret, M.; Munoz, E.; Oliver, J. F.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: lbarrien@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701263400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4976  
Permanent link to this record
 

 
Author Goasduff, A. et al; Gadea, A. doi  openurl
  Title The GALILEO gamma-ray array at the Legnaro National Laboratories Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1015 Issue Pages 165753 - 15pp  
  Keywords High-resolution gamma-ray spectroscopy; HPGe; Silicon; Neutron; Electronics; DAQ  
  Abstract GALILEO, a new 4 pi high-resolution gamma-detection array, based on HPGe detectors, has been developed and installed at the Legnaro National Laboratories. The GALILEO array greatly benefits from a fully-digital readout chain, customized DAQ, and a variety of complementary detectors to improve the resolving power by the detection of particles, ions or high-energy gamma-ray transitions. In this work, a full description of the array, including electronics and DAQ, is presented together with its complementary instrumentation.  
  Address [Goasduff, A.; Valiente-Dobon, J. J.; Barrientos, D.; Biasotto, M.; Brugnara, D.; Cocconi, P.; Cortes, M. L.; de Angelis, G.; Egea, F. J.; Fantinel, S.; Gambalonga, A.; Gottardo, A.; Gozzelino, A.; Gregor, E. T.; Gulmini, M.; Hadynska-Klek, K.; Illana, A.; Jaworski, G.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Rosso, D.; Siciliano, M.; Toniolo, N.; Volpe, V.; Zanon, I] INFN Lab Nazl Legnaro, Legnaro, Italy, Email: alain.goasduff@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000717077900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5025  
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1050 Issue Pages 168119 - 5pp  
  Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip  
  Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.  
  Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001035405300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5601  
Permanent link to this record
 

 
Author Bach, E. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Analysis of the quality assurance results from the initial part of production of the ATLAS18 ITK strip sensors Type Journal Article
  Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1064 Issue Pages 169435 - 8pp  
  Keywords Silicon strip sensors; Parameter analysis  
  Abstract The production of strip sensors for the ATLAS Inner Tracker (ITk) started in 2021. Since then, a Quality Assurance (QA) program has been carried out continuously, by using specific test structures, in parallel to the Quality Control (QC) inspection of the sensors. The QA program consists of monitoring sensor-specific characteristics and the technological process variability, before and after the irradiation with gammas, neutrons, and protons. After two years, half of the full production volume has been reached and we present an analysis of the parameters measured as part of the QA process. The main devices used for QA purposes are miniature strip sensors, monitor diodes, and the ATLAS test chip, which contains several test structures. Such devices are tested by several sites across the collaboration depending on the type of samples (non-irradiated components or irradiated with protons, neutrons, or gammas). The parameters extracted from the tests are then uploaded to a database and analyzed by Python scripts. These parameters are mainly examined through histograms and timeevolution plots to obtain parameter distributions, production trends, and meaningful parameter-to-parameter correlations. The purpose of this analysis is to identify possible deviations in the fabrication or the sensor quality, changes in the behavior of the test equipment at different test sites, or possible variability in the irradiation processes. The conclusions extracted from the QA program have allowed test optimization, establishment of control limits for the parameters, and a better understanding of device properties and fabrication trends. In addition, any abnormal results prompt immediate feedback to a vendor.  
  Address [Bach, E.; Bhardwaj, A.; Crick, B.; Ullan, M.] CSIC, Inst Microelect Barcelona IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: eric.bach@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001252172700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6163  
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G. doi  openurl
  Title Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 202 Issue Pages 110507 - 11pp  
  Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers  
  Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.  
  Address [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000870840600006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5392  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva