|   | 
Details
   web
Records
Author Poley, L.; Blue, A.; Bloch, I.; Buttar, C.; Fadeyev, V.; Fernandez-Tejero, J.; Fleta, C.; Hacker, J.; Lacasta, C.; Miñano, M.; Renzmann, M.; Rossi, E.; Sawyer, C.; Sperlich, D.; Stegler, M.; Ullan, M.; Unno, Y.
Title Mapping the depleted area of silicon diodes using a micro-focused X-ray beam Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P03024 - 14pp
Keywords Si microstrip and pad detectors; Detector design and construction technologies and materials; Particle tracking detectors (Solid-state detectors); Radiation-hard detectors
Abstract For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker (ITk). The ITk will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of 500V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k Omega.cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source (Didcot, U.K.). For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied.
Address [Poley, L.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: Anne-Luise.Poley@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000463330900012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3973
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Modelling radiation damage to pixel sensors in the ATLAS detector Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P06012 - 52pp
Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Radiation-hard detectors; Solid state detectors
Abstract Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 10(15) 1 MeV n(eq)/cm(2), while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (<= 10(15) 1 MeV n(eq)/cm(2)).
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000472134700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4063
Permanent link to this record
 

 
Author Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F.
Title Improving the light collection efficiency of silicon photomultipliers through the use of metalenses Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 11 Pages P11021 - 13pp
Keywords Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors
Abstract Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.
Address [Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000595650800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4634
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents Type Journal Article
Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 16 Issue 8 Pages P08025 - 46pp
Keywords Radiation damage to detector materials (solid state); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
Abstract Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger vertical bar z vertical bar-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000706929300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5004
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 1 Pages P01005 - 111pp
Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000757487100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5131
Permanent link to this record