|   | 
Details
   web
Records
Author Di Mauro, M.; Donato, F.; Fornengo, N.; Lineros, R.A.; Vittino, A.
Title Interpretation of AMS-02 electrons and positrons data Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 006 - 33pp
Keywords ultra high energy cosmic rays; particle acceleration; cosmic ray theory; cosmic ray experiments
Abstract We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positrons and electrons from pulsar wind nebulae in the ATNF catalog are included and studied in terms of their most significant (while loosely known) properties and under different assumptions (average contribution from the whole catalog, single dominant pulsar, a few dominant pulsars). We obtain a remarkable agreement between our various modeling and the AMS-02 data for all types of analysis, demonstrating that the whole AMS-02 leptonic data admit a self-consistent interpretation in terms of astrophysical contributions.
Address [Di Mauro, M.; Donato, F.; Fornengo, N.; Vittino, A.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy, Email: mattia.dimauro@to.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000334496500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1771
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title Reconstruction of inclined air showers detected with the pierre Auger Observatory Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 019 - 32pp
Keywords ultra high energy cosmic rays; cosmic ray experiments
Abstract We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60 degrees detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
Address [Anchordoqui, L.] CUNY, CUNY Herbert H Lehman Coll, Dept Phys & Astron, New York, NY 10021 USA
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000341848800019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1942
Permanent link to this record
 

 
Author Di Bari, P.; Ludl, P.O.; Palomares-Ruiz, S.
Title Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 41pp
Keywords dark matter theory; leptogenesis; physics of the early universe; ultra high energy photons and neutrinos
Abstract We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N-DM with mass M-DM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, Ns with mass M-S, induced by Higgs portal interactions. The same interactions are also responsible for N-DM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M-DM >> M-S, there is an allowed window on M-DM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV less than or similar to M-S < M-DM < 10PeV. We discuss the specific properties of this high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.
Address [Di Bari, Pasquale; Ludl, Patrick Otto] Univ Southampton, Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: P.Di-Bari@soton.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000397734100044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3020
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 027 - 36pp
Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos
Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000406420500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3243
Permanent link to this record
 

 
Author Arguelles, C.A.; Palomares-Ruiz, S.; Schneider, A.; Wille, L.; Yuan, T.L.
Title Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 047 - 41pp
Keywords neutrino detectors; neutrino experiments; ultra high energy photons and neutrinos
Abstract The atmospheric neutrino passing fraction, or self-veto, is defined as the probability for an atmospheric neutrino not to be accompanied by a detectable muon from the same cosmic-ray air shower. Building upon previous work, we propose a redefinition of the passing fractions by unifying the treatment for muon and electron neutrinos. Several approximations have also been removed. This enables performing detailed estimations of the uncertainties in the passing fractions from several inputs: muon losses, cosmic-ray spectrum, hadronic-interaction models and atmosphere-density profiles. We also study the passing fractions under variations of the detector configuration: depth, surrounding medium and muon veto trigger probability. The calculation exhibits excellent agreement with passing fractions obtained from Monte Carlo simulations. Finally, we provide a general software framework to implement this veto technique for all large-scale neutrino observatories.
Address [Arguelle, Carlos A.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000439590200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3677
Permanent link to this record