toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Search for scalar leptoquarks in pp collisions at root s=13TeV with the ATLAS experiment Type Journal Article
  Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 18 Issue Pages 093016 - 25pp  
  Keywords leptoquark; ATLAS; LHC  
  Abstract An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in pp collisions at root s = 13 TeV at the large hadron collider, have been considered. An integrated luminosity of 3.2 fb(-1), corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 and 1050 GeV (1160 and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results.  
  Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384093400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2828  
Permanent link to this record
 

 
Author Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Quantum walks as simulators of neutrino oscillations in a vacuum and matter Type Journal Article
  Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 18 Issue Pages 103038 - 8pp  
  Keywords quantum walks; neutrino oscillations; quantum simulation  
  Abstract We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.  
  Address [Di Molfetta, G.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386816100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2846  
Permanent link to this record
 

 
Author Trbojevich, R.A.; Fernandez, A.; Watanabe, F.; Mustafa, T.; Bryant, M.S. doi  openurl
  Title Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells Type Journal Article
  Year 2016 Publication Journal of Nanoparticle Research Abbreviated Journal J. Nanopart. Res.  
  Volume 18 Issue 3 Pages 55 - 12pp  
  Keywords Membranes; Silver nanoparticles; Diffusion cells; Food packaging; Permeation; Environmental and health effects  
  Abstract Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 lm pore diameter 125 μm thick synthetic cellulose membranes, and 16 and 120 μm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.  
  Address [Trbojevich, Raul A.; Bryant, Matthew S.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, 3900 NCTR Rd, Jefferson, AR 72079 USA, Email: velifdez@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1388-0764 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387044400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2849  
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title Extended Skyrme equation of state in asymmetric nuclear matter Type Journal Article
  Year 2016 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 585 Issue Pages A83 - 11pp  
  Keywords dense matter; equation of state  
  Abstract We present a new equation of state for infinite systems (symmetric, asymmetric, and neutron matter) based on an extended Skyrme functional that has been constrained by microscopic Brueckner-Bethe-Goldstone results. The resulting equation of state reproduces the main features of microscopic calculations very accurately and is compatible with recent measurements of two times Solar-mass neutron stars. We provide all necessary analytical expressions to facilitate a quick numerical implementation of quantities of astrophysical interest.  
  Address [Davesne, D.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, UMR 5822,IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: alessandro.pastore@york.ac.uk  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1432-0746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369710300090 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2562  
Permanent link to this record
 

 
Author Vento, V. url  doi
openurl 
  Title Glueball-meson mixing Type Journal Article
  Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 52 Issue 1 Pages 1 - 5pp  
  Keywords  
  Abstract Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at similar to 1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar sprectrum.  
  Address [Vento, Vicente] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Valencia, Spain, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368116700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2525  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva