|   | 
Details
   web
Records
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 027 - 36pp
Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos
Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000406420500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3243
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title A fresh look into the interacting dark matter scenario Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 007 - 35pp
Keywords particle physics – cosmology connection; dwarfs galaxies; reionization; dark matter theory
Abstract The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter photon elastic scattering cross section of sigma gamma DM < 8 x 10(-10) sigma(T) (m(DM)/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.
Address [Escudero, Miguel; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000434381500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3612
Permanent link to this record
 

 
Author Jeong, Y.S.; Palomares-Ruiz, S.; Reno, M.H.; Sarcevic, I.
Title Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 019 - 43pp
Keywords cosmological neutrinos; neutrino theory; supernova neutrinos
Abstract Sterile neutrinos with mass in the eV-scale and large mixings of order theta(0) similar or equal to 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, M-phi, and its coupling to sterile neutrinos, g(s). Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For M-phi similar to 5 – 10 keV and g(s) similar to 10-(4) – 10(-2), as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
Address [Jeong, Yu Seon; Sarcevic, Ina] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85704 USA, Email: ysjeong@email.arizona.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000434991300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3613
Permanent link to this record
 

 
Author Arguelles, C.A.; Palomares-Ruiz, S.; Schneider, A.; Wille, L.; Yuan, T.L.
Title Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 047 - 41pp
Keywords neutrino detectors; neutrino experiments; ultra high energy photons and neutrinos
Abstract The atmospheric neutrino passing fraction, or self-veto, is defined as the probability for an atmospheric neutrino not to be accompanied by a detectable muon from the same cosmic-ray air shower. Building upon previous work, we propose a redefinition of the passing fractions by unifying the treatment for muon and electron neutrinos. Several approximations have also been removed. This enables performing detailed estimations of the uncertainties in the passing fractions from several inputs: muon losses, cosmic-ray spectrum, hadronic-interaction models and atmosphere-density profiles. We also study the passing fractions under variations of the detector configuration: depth, surrounding medium and muon veto trigger probability. The calculation exhibits excellent agreement with passing fractions obtained from Monte Carlo simulations. Finally, we provide a general software framework to implement this veto technique for all large-scale neutrino observatories.
Address [Arguelle, Carlos A.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000439590200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3677
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 5 Pages 051 - 30pp
Keywords dark matter theory; ultra high energy photons and neutrinos
Abstract In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data alone. Finally, we also consider the possibility of a signal from dark matter annihilations and perform analogous analyses to the case of decays, commenting on its implications.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000469808500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4038
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Variations in fundamental constants at the cosmic dawn Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 25pp
Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization
Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000551875400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4473
Permanent link to this record
 

 
Author Garani, R.; Palomares-Ruiz, S.
Title Evaporation of dark matter from celestial bodies Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 042 - 53pp
Keywords dark matter detectors; dark matter theory; massive stars; stars
Abstract Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium, spanning the mass range [10(-)(10) – 10(2)] M-circle dot, for constant scattering cross sections and s-wave annihilations. We illustrate the critical importance of the exponential tail of the evaporation rate, which has not always been appreciated in recent literature, and obtain a robust result: for the geometric value of the scattering cross section and for interactions with nucleons, at the local galactic position, the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium is approximately given by E-c/T-chi similar to 30, where E-c is the escape energy of DM particles at the core of the object and T-chi is their temperature. In that case, the minimum value of the DM evaporation mass is obtained for super-Jupiters and brown dwarfs, m(ev)(ap) similar or equal to 0.7 GeV. For other values of the scattering cross section, the DM evaporation mass only varies by a factor smaller than three within the range 10(-41) cm(2) <= sigma(p) <= 10(-31) cm(2), where sigma(p) is the spin-independent DM-nucleon scattering cross section. Its dependence on parameters such as the galactic DM density and velocity, or the scattering and annihilation cross sections is only logarithmic, and details on the density and temperature profiles of celestial bodies have also a small impact.
Address [Garani, Raghuveer] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804029400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5243
Permanent link to this record
 

 
Author Bernal, N.; Munoz-Albornoz, V.; Palomares-Ruiz, S.; Villanueva-Domingo, P.
Title Current and future neutrino limits on the abundance of primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 068 - 38pp
Keywords neutrino detectors; primordial black holes
Abstract Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
Address [Bernal, Nicolas] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000882783900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5412
Permanent link to this record
 

 
Author Salvado, J.; Mena, O.; Palomares-Ruiz, S.; Rius, N.
Title Non-standard interactions with high-energy atmospheric neutrinos at IceCube Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 141 - 30pp
Keywords Neutrino Physics; Solar and Atmospheric Neutrinos
Abstract Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μtau-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal epsilon(mu tau), with the 90% credible interval given by -6.0 x 10(-3) < epsilon(mu tau) < 5.4 x 10(-3), comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of epsilon(mu tau) near its current bound.
Address [Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Aparlado Correos 22085, E-46071 Valencia, Spain, Email: jsalvado@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000397645900004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3034
Permanent link to this record
 

 
Author Garani, R.; Gasparotto, F.; Mastrolia, P.; Munch, H.J.; Palomares-Ruiz, S.; Primo, A.
Title Two-photon exchange in leptophilic dark matter scenarios Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 212 - 42pp
Keywords Cosmology of Theories beyond the SM; Effective Field Theories; Integrable Hierarchies
Abstract In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, which only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we quantitatively show that form factors in the range of momentum transfer relevant for local galactic dark matter, can be significantly smaller than their value at zero momentum transfer, which is the approach usually considered.
Address [Garani, Raghuveer] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000736468500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5068
Permanent link to this record