toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Anda, F.J.; Antoniadis, I.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Scotogenic dark matter in an orbifold theory of flavor Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 190 - 13pp  
  Keywords Field Theories in Higher Dimensions; Neutrino Physics; Beyond Standard Model  
  Abstract We propose a flavour theory in which the family symmetry results naturally from a six-dimensional orbifold compactification. “Diracness” of neutrinos is a consequence of the spacetime dimensionality, and the fact that right-handed neutrinos live in the bulk. Dark matter is incorporated in a scotogenic way, as a result of an auxiliary Z(3) symmetry, and its stability is associated to the conservation of a “dark parity” symmetry. The model leads naturally to a “golden” quark-lepton mass relation.  
  Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos 47600, Jalisco, Mexico, Email: fran@tepaits.mx;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000590532500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4614  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Searches for low-mass dimuon resonances Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 156 - 26pp  
  Keywords Beyond Standard Model; Exotics; Hadron-Hadron scattering (experiments)  
  Abstract Searches are performed for a low-mass dimuon resonance, X, produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using a data sample corresponding to an integrated luminosity of 5.1 fb(-1) and collected with the LHCb detector. The X bosons can either decay promptly or displaced from the proton-proton collision, where in both cases the requirements placed on the event and the assumptions made about the production mechanisms are kept as minimal as possible. The searches for promptly decaying X bosons explore the mass range from near the dimuon threshold up to 60 GeV, with nonnegligible X widths considered above 20 GeV. The searches for displaced X -> μ(+)mu (-) decays consider masses up to 3 GeV. None of the searches finds evidence for a signal and 90% confidence-level exclusion limits are placed on the X -> μ(+)mu (-) cross sections, each with minimal model dependence. In addition, these results are used to place world-leading constraints on GeV-scale bosons in the two-Higgs-doublet and hidden-valley scenarios.  
  Address [Baptista Leite, J.; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: yanting.fan@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000591578300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4620  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Poveda, J.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Reconstruction and identification of boosted di-tau systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 163 - 47pp  
  Keywords Beyond Standard Model; Hadron-Hadron scattering (experiments); Higgs physics; Tau Physics  
  Abstract In this paper, a new technique for reconstructing and identifying hadronically decaying tau (+)tau (-) pairs with a large Lorentz boost, referred to as the di-tau tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-tau tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted bbbar pair and the other into a boosted tau (+)tau (-) pair, with two hadronically decaying tau -leptons in the final state. Using 139 fb(-1) of proton-proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-tau tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-tau objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon-gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1-3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000600146700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4647  
Permanent link to this record
 

 
Author Escudero, M.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Relaxing cosmological neutrino mass bounds with unstable neutrinos Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 119 - 44pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Lambda CDM), the Planck collaboration reports Sigma m(v)< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe <tau>(nu) less than or similar to t(U), represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state nu (4) and a Goldstone boson phi, in which nu (i)-> nu (4)phi decays can loosen the neutrino mass bounds up to Sigma m(v) similar to 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)(mu-tau) flavor symmetry, which are otherwise in tension with the current bound on Sigma m(v).  
  Address [Escudero, Miguel] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: miguel.escudero@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000601400500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4661  
Permanent link to this record
 

 
Author Husek, T.; Monsalvez-Pozo, K.; Portoles, J. url  doi
openurl 
  Title Lepton-flavour violation in hadronic tau decays and mu-tau conversion in nuclei Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 059 - 48pp  
  Keywords Beyond Standard Model; Effective Field Theories  
  Abstract Within the Standard Model Effective Field Theory framework, with operators up to dimension 6, we perform a model-independent analysis of the lepton-flavour-violating processes involving tau leptons. Namely, we study hadronic tau decays and l-tau conversion in nuclei, with l = e, mu. Based on available experimental limits, we establish constraints on the Wilson coefficients of the operators contributing to these processes. Our work paves the way to extract the related information from Belle II and foreseen future experiments.  
  Address [Husek, Tomas; Monsalvez-Pozo, Kevin; Portoles, Jorge] Univ Valencia, CSIC, Inst Fis Corpuscular, Apt Correus 22085, E-46071 Valencia, Spain, Email: Tomas.Husek@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609870600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4686  
Permanent link to this record
 

 
Author Bloch, I.M.; Caputo, A.; Essig, R.; Redigolo, D.; Sholapurkar, M.; Volansky, T. url  doi
openurl 
  Title Exploring new physics with O(keV) electron recoils in direct detection experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 178 - 63pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in O(keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an O(100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.  
  Address [Bloch, Itay M.; Volansky, Tomer] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel, Email: itay.bloch.m@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000616257000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4713  
Permanent link to this record
 

 
Author de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martinez-Mirave, P.; Mena, O.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title 2020 global reassessment of the neutrino oscillation picture Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 071 - 36pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NO nu A measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of theta (13), theta (12), Delta m212 and Delta m312. The best fit value for the atmospheric angle theta (23) lies in the second octant, but first octant solutions remain allowed at similar to 2.4 sigma. Regarding CP violation measurements, the preferred value of delta we obtain is 1.08 pi (1.58 pi) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5 sigma statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00 sigma. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68 sigma within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70 sigma. This very same cosmological data set provides 2 sigma upper limits on the total neutrino mass corresponding to Sigma m(nu)< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.  
  Address [de Salas, P. F.] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000618343000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4727  
Permanent link to this record
 

 
Author Barducci, D.; Bertuzzo, E.; Caputo, A.; Hernandez, P.; Mele, B. url  doi
openurl 
  Title The see-saw portal at future Higgs Factories Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 117 - 32pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Lambda. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Lambda similar or equal to 500-1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.  
  Address [Barducci, Daniele] Univ Roma Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy, Email: daniele.barducci@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629645800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4766  
Permanent link to this record
 

 
Author Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultralight scalars in leptonic observables Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 240 - 37pp  
  Keywords Beyond Standard Model; CP violation; Neutrino Physics  
  Abstract Many new physics scenarios contain ultralight scalars, states which are either exactly massless or much lighter than any other massive particle in the model. Axions and majorons constitute well-motivated examples of this type of particle. In this work, we explore the phenomenology of these states in low-energy leptonic observables. After adopting a model independent approach that includes both scalar and pseudoscalar interactions, we briefly discuss the current limits on the diagonal couplings to charged leptons and consider processes in which the ultralight scalar phi is directly produced, such as μ-> e phi, or acts as a mediator, as in tau -> μμmu. Contributions to the charged leptons magnetic and electric moments are studied as well.  
  Address [Escribano, Pablo; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: pablo.escribano@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635264700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4769  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Vicente, A. url  doi
openurl 
  Title The inverse seesaw family: Dirac and Majorana Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 248 - 29pp  
  Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries  
  Abstract After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “mu -parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.  
  Address [Centelles Chulia, Salvador; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635241800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4772  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva