|   | 
Details
   web
Records
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 092003 - 20pp
Keywords
Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587596500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4598
Permanent link to this record
 

 
Author Penalva, N.; Hernandez, E.; Nieves, J.
Title (B)over-bar(c) ->eta(c),(B)over-bar(c) -> J/psi and (B)over-bar -> D-(*()) semileptonic decays including new physics Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 096016 - 27pp
Keywords
Abstract We apply the general formalism derived by Penalva et al. [Phys. Rev. D 101, 113004 (2020)] to the semileptonic decay of pseudoscalar mesons containing a b quark. While present (B) over bar -> D-(*()) data give the strongest evidence in favor of lepton flavor universality violation, the observables that are normally considered are not able to distinguish between different new physics (NP) scenarios. In the above reference we discussed the relevant role that the various contributions to the double differential decay widths d(2)Gamma (d omega d cos theta(l)) and d(2)Gamma (d omega dE(l)) could play to this end. Here omega is the product of the two hadron fourvelocities, theta(l) is the angle made by the final lepton and final hadron three-momenta in the center of mass of the final two-lepton system, and E-l is the final charged lepton energy in the laboratory system. The formalism was applied by Penalva et al. to the analysis of the Lambda(b) -> Lambda(c) semileptonic decay, showing the new observables were able to tell apart different NP scenarios. Here we analyze the (B) over barc -> eta(c)tau(nu) over bar (tau), (B) over barc -> J/psi tau(nu) over bar (tau), (B) over bar -> D tau(nu) over bar (tau) and (B) over bar -> D*tau(nu) over bar (tau) , semileptonic decays. We find that, as a general rule, the (B) over barc -> J/psi observables, even including (tau) polarization, are less optimal for distinguishing between NP scenarios than those obtained from (B) over barc -> eta(c) decays, or those presented by Penalva et al. for the related Lambda(b) -> Lambda(c) semileptonic decay. Finally, we show that (B) over bar -> D and (B) over barc -> eta(c) , and (B) over bar -> D* and (B) over barc -> J/psi decay observables exhibit similar behaviors.
Address [Penalva, Neus; Hernandez, Eliecer] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000588583900012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4608
Permanent link to this record
 

 
Author Blas, D.; Witte, S.J.
Title Imprints of axion superradiance in the CMB Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 103018 - 10pp
Keywords
Abstract Light axions (m(a) less than or similar to 10(-10) eV) can form dense clouds around rapidly rotating astrophysical black holes via a mechanism known as rotational superradiance. The coupling between axions and photons induces a parametric resonance, arising from the stimulated decay of the axion cloud, which can rapidly convert regions of large axion number densities into an enormous flux of low-energy photons. In this work we consider the phenomenological implications of a superradiant axion cloud undergoing resonant decay. We show that the low-energy photons produced from such events will be absorbed over cosmologically short distances, potentially inducing massive shockwaves that heat and ionize the intergalactic medium over Mpc scales. These shockwaves may leave observable imprints in the form of anisotropic spectral distortions or inhomogeneous features in the optical depth.
Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: diego.blas@kcl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589606900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4609
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Lu, J.N.; Valle, J.W.F.
Title Predictions from warped flavor dynamics based on the T ' family group Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 9 Pages 095014 - 17pp
Keywords
Abstract We propose a realistic theory of fermion masses and mixings using a five-dimensional warped scenario where all fermions propagate in the bulk and the Higgs field is localized on the IR bran. The assumed T' flavor symmetry is broken on the branes by flavon fields, providing a consistent scenario where fermion mass hierarchies arise from adequate choices of the bulk mass parameters, while quark and lepton mixing angles are restricted by the family symmetry. Neutrino mass splittings, mixing parameters and the Dirac CP phase all arise from the type-I seesaw mechanism and are tightly correlated, leading to predictions for the neutrino oscillation parameters, as well as expected 0 nu beta beta decay rates within reach of upcoming experiments. The scheme also provides a good global description of flavor observables in the quark sector.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589907700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4610
Permanent link to this record
 

 
Author Figueroa, D.G.; Hindmarsh, M.; Lizarraga, J.; Urrestilla, J.
Title Irreducible background of gravitational waves from a cosmic defect network: Update and comparison of numerical techniques Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 103516 - 25pp
Keywords
Abstract Cosmological phase transitions in the early Universe may produce relics in the form of a network of cosmic defects. Independently of the order of a phase transition, topology of the defects, and their global or gauge nature, the defects are expected to emit gravitational waves (GWs) as the network energy-momentum tensor adapts itself to maintaining scaling. We show that the evolution of any defect network (and for that matter any scaling source) emits a GW background with spectrum Omega(GW) proportional to f(3) for f << f(0), Omega(GW) proportional to 1/f(2) for f(0) less than or similar to f less than or similar to feq, and Omega(GW) proportional to const (i.e., exactly scale invariant) for f >> f(eq), where f(0) and f(eq) denote respectively the frequencies corresponding to the present and matter-radiation equality horizons. This background represents an irreducible emission of GWs from any scaling network of cosmic defects, with its amplitude characterized only by the symmetry-breaking scale and the nature of the defects. Using classical lattice simulations we calculate the GW signal emitted by defects created after the breaking of a global symmetry O(N) -> O(N – 1). We obtain the GW spectrum for N between 2 and 20 with two different techniques: integrating over unequal-time correlators of the energy-momentum tensor, updating our previous work on smaller lattices, and for the first time, comparing the result with the real-time evolution of the tensor perturbations sourced by the same defects. Our results validate the equivalence of the two techniques. Using cosmic microwave background upper bounds on the defects' energy scale, we discuss the difficulty of detecting this GW background in the case of global defects.
Address [Figueroa, Daniel G.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain, Email: daniel.figueroa@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000589181600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4618
Permanent link to this record