|   | 
Details
   web
Records
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R.
Title XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 028 - 34pp
Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas
Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001195757300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6043
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D.
Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 029 - 25pp
Keywords leptogenesis; dark matter theory; gravitational waves / theory
Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.
Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001246744300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6162
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 8 Pages 083110 - 7pp
Keywords neutrino masses; dark matter; symmetries; scotogenic
Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.
Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000557423400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4494
Permanent link to this record
 

 
Author Rebel, B.; Hall, C.; Bernard, E.; Faham, C.H.; Ito, T.M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S.P.; Resnati, F.; Rowson, P.C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H.
Title High voltage in noble liquids for high energy physics Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages T08004 - 57pp
Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.)
Abstract A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.
Address [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: rebel@fnal.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000341927600043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1947
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P11006 - 20pp
Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)
Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000345026000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2061
Permanent link to this record
 

 
Author Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F.
Title Improving the light collection efficiency of silicon photomultipliers through the use of metalenses Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 11 Pages P11021 - 13pp
Keywords Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors
Abstract Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.
Address [Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000595650800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4634
Permanent link to this record
 

 
Author Garcfa-Barcelo, J.M.; Melcon, A.A.; Cuendis, S.A.; Diaz-Morcillo, A.; Gimeno, B.; Kanareykin, A.; Lozano-Guerrero, A.J.; Navarro, P.; Wuensch, W.
Title On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions Type Journal Article
Year 2023 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 11 Issue Pages 30360-30372
Keywords Tuning; Couplings; Permittivity; Dark matter; Magnetic resonance; Cryogenics; Receivers; Ferroelectrics; Microwave devices; Axion detection; axion-photon interaction; dark matter; ferroelectrics; haloscope; KTO; microwave resonator; STO; tuning
Abstract Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.
Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: josemaria.garcia@upct.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000966674500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5513
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for dark matter annihilation in the earth using the ANTARES neutrino telescope Type Journal Article
Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 16 Issue Pages 41-48
Keywords Dark matter; Neutrino telescope; ANTARES; Indirect detection; WIMP
Abstract A search for a neutrino signal from WIMP pair annihilations in the centre of the Earth has been performed with the data collected with the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria have been developed and tuned to maximise the sensitivity of the experiment to such a neutrino signal. No significant excess of neutrinos over the expected background has been observed. Upper limits at 90% C.L. on the WIMP annihilation rate in the Earth and the spin independent scattering cross-section of WIMPs to nucleons sigma(SI)(p) were calculated for WIMP pair annihilations into either iota(+) iota(-), W+W-, b (b) over bar or the non-SUSY v mu(v) over bar as a function of the WIMP mass (between 25 GeV/c(2) and 1000 GeV/c(2)) and as a function of the thermally averaged annihilation cross section times velocity <sigma A(v)>(Earth) of the WIMPs in the centre of the Earth. For masses of the WIMP close to the mass of iron nuclei (50 GeV/c(2)), the obtained limits on sigma(SI)(p) are more stringent than those obtained by other indirect searches.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: antares.spokesperson@in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000405461200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3201
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title Interacting dark energy in the early 2020s: A promising solution to the H-0 and cosmic shear tensions Type Journal Article
Year 2020 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 30 Issue Pages 100666 - 12pp
Keywords Hubble tension; Cosmological parameters; Dark matter; Dark energy; Interacting dark energy
Abstract We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H-0 from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces the H-0 tension to a level which could possibly be compatible with a statistical fluctuation. The very same model also significantly reduces the Omega(m) – sigma(8) tension between CMB and cosmic shear measurements. Interactions between the dark sectors of our Universe remain therefore a promising joint solution to these persisting cosmological tensions.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000595300400037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4646
Permanent link to this record
 

 
Author Yang, W.Q.; Pan, S.; Mena, O.; Di Valentino, E.
Title On the dynamics of a dark sector coupling Type Journal Article
Year 2023 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 40 Issue Pages 19-40
Keywords Dark matter; Dark energy; Interacting cosmologies; Cosmological observations
Abstract Interacting dark energy models may play a crucial role in explaining several important observational issues in modern cosmology and also may provide a solution to current cosmological tensions. Since the phenomenology of the dark sector could be extremely rich, one should not restrict the interacting models to have a coupling parameter which is constant in cosmic time, rather allow for its dynamical behaviour, as it is common practice in the literature when dealing with other dark energy properties, as the dark energy equation of state. We present here a compendium of the current cosmological constraints on a large variety of interacting models, investigating scenarios where the coupling parameter of the interaction function and the dark energy equation of state can be either constant or dynamical. For the most general schemes, in which both the coupling parameter of the interaction function and the dark energy equation of state are dynamical, we find 95% CL evidence for a dark energy component at early times and slightly milder evidence for a dynamical dark coupling for the most complete observational data set exploited here, which includes CMB, BAO and Supernova Ia measurements. Interestingly, there are some cases where a dark energy component different from the cosmological constant case at early times together with a coupling different from zero today, can alleviate both the H-0 and S-8 tension for the full dataset combination considered here. Due to the energy exchange among the dark sectors, the current values of the matter energy density and of the clustering parameter sigma(8) are shifted from their ACDM-like values. This fact makes future surveys, especially those focused on weak lensing measurements, unique tools to test the nature and the couplings of the dark energy sector. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:001089001500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5761
Permanent link to this record