toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Fernandez, P.; Izmaylov, A.; Novella, P. url  doi
openurl 
  Title Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations Type Journal Article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 580 Issue 7803 Pages 339-344  
  Keywords  
  Abstract The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model's charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.  
  Address [Berguno, D. Bravo; Ishii, T.; Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid, Spain  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000530151300023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4388  
Permanent link to this record
 

 
Author Wilson, J.N. et al; Algora, A. doi  openurl
  Title Angular momentum generation in nuclear fission Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 590 Issue 7847 Pages 566-570  
  Keywords  
  Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.  
  Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621583600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4717  
Permanent link to this record
 

 
Author Khachatryan, M. et al, Coloma, P. doi  openurl
  Title Electron-beam energy reconstruction for neutrino oscillation measurements Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 599 Issue 7886 Pages 565-570  
  Keywords  
  Abstract Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4). Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.  
  Address [Khachatryan, M.; Hauenstein, F.; Weinstein, L. B.] Old Domin Univ, Norfolk, VA USA, Email: adishka@mit.edu  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000722366200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5073  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume 602 Issue 7895 Pages 63-67  
  Keywords  
  Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000750429600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5191  
Permanent link to this record
 

 
Author ATLAS Collaboration url  doi
openurl 
  Title A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume 607 Issue 7917 Pages 52-59  
  Keywords  
  Abstract The standard model of particle physics(1-4) describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles(5-9). The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons-the carriers of the strong, electromagnetic and weak forces-are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (tau)) are well measured and indications of interactions with a second-generation particle (muons, mu) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000820564200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5521  
Permanent link to this record
 

 
Author AGATA Collaboration (Ralet, D. et al); Gadea, A.; Perez-Vidal, R.M. doi  openurl
  Title Toward lifetime and g factor measurements of short-lived states in the vicinity of Pb-208 Type Journal Article
  Year 2017 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 92 Issue 5 Pages 054004 - 4pp  
  Keywords multi-nucleon transfer reaction; lifetime measurement; AGATA; VAMOS plus  
  Abstract The multi-nucleon transfer reaction mechanism was used to produce and study nuclei in the vicinity of 208Pb. This mass region is a test case for the nuclear shell model. The mass identification of the fragments was performed with the large acceptance magnetic spectrometer VAMOS++ coupled to the AGATA gamma-tracking array. This experiment aimed to determine both lifetimes and gyromagnetic ratios of excited states with the Cologne plunger device. The analysis indicates promising results with the possibility to determine several new lifetimes in this region.  
  Address [Ralet, D.; Georgiev, G.; Konstantinopoulos, T.; Korichi, A.; Ljungvall, J.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France, Email: damian.ralet@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399888300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3092  
Permanent link to this record
 

 
Author Pajtler, M.V. et al; Gadea, A. doi  openurl
  Title Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction Type Journal Article
  Year 2021 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 96 Issue 3 Pages 035305 - 7pp  
  Keywords multinucleon transfer reactions; gamma spectroscopy; magnetic spectrometers; gamma-ray spectrometers  
  Abstract Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.  
  Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, Osijek, Croatia, Email: Suzana.Szilner@irb.hr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000611517400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4694  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Hassanabadi, H.; Reis, J.A.A.S.; Lisboa-Santos, L. url  doi
openurl 
  Title Thermodynamics of a quantum ring modified by Lorentz violation Type Journal Article
  Year 2023 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 98 Issue 6 Pages 065943 - 13pp  
  Keywords quantum ring; thermodynamic properties; Lorentz violation  
  Abstract In this work, we investigate the consequences of Lorentz-violating terms in the thermodynamic properties of a 1-dimensional quantum ring. In particular, we use the ensemble theory to obtain our results of interest. The thermodynamic functions as well as the spin currents are calculated as a function of the temperature. We observe that parameter xi, which triggers the Lorentz symmetry breaking, plays a major role in low temperature regime. Finally, depending on the configuration of the system, electrons can rotate in two different directions: clockwise and counterclockwise.  
  Address [Araujo Filho, A. A.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989669300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5556  
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Arnold R. et al); Martin-Albo, J.; Novella, P. url  doi
openurl 
  Title Measurement of the beta beta Decay Half-Life of (130)Te with the NEMO-3 Detector Type Journal Article
  Year 2011 Publication Physical Review Letters Abbreviated Journal  
  Volume 107 Issue 6 Pages 062504  
  Keywords  
  Abstract We report results from the NEMO-3 experiment based on an exposure of 1275 days with 661 g of (130)Te in the form of enriched and natural tellurium foils. The beta beta decay rate of (130)Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T(1/2)(2v)=[7.0 +/- 0.9(stat) +/- 1: 1(syst)] x 10(20) yr. This represents the most precise measurement of this half- life yet published and the first real-time observation of this decay.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293562700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 715  
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Be-7(n,alpha)He-4 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN Type Journal Article
  Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 117 Issue 15 Pages 152701 - 7pp  
  Keywords  
  Abstract The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at nTOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the nTOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-Be-7-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.  
  Address [Barbagallo, M.; Colonna, N.; Damone, L.; Mastromarco, M.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: nicola.colonna@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384479300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2822  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva