|   | 
Details
   web
Records
Author Wu, J. et al; Algora, A.; Agramunt, J.; Morales, A.I.; Orrigo, S.E.A.; Tain, J.L.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A.
Title First observation of isomeric states in 111Zr, 113Nb, and 115Mo Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 106 Issue 6 Pages 064328 - 5pp
Keywords
Abstract Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
Address [Wu, J.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA, Email: jwu2@bnl.gov
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000906391600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5452
Permanent link to this record
 

 
Author IDS Collaboration (Heideman, J. et al); Algora, A.; Morales, A.I.
Title Evidence of nonstatistical neutron emission following beta decay near doubly magic Sn-132 Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 2 Pages 024311 - 9pp
Keywords
Abstract Models of the beta-delayed neutron emission (beta n) assume that neutrons are emitted statistically via an intermediate compound nucleus post beta decay. Evidence to the contrary was found in an In-134 beta-decay experiment carried out at ISOLDE CERN. Neutron emission probabilities from the unbound states in Sn-134 to known low-lying, single-particle states in Sn-133 were measured. The neutron energies were determined using the time-of-flight technique, and the subsequent decay of excited states in Sn-133 was studied using gamma-ray detectors. Individual beta n probabilities were determined by correlating the relative intensities and energies of neutrons and gamma rays. The experimental data disagree with the predictions of representative statistical models which are based upon the compound nucleus postulate. Our results suggest that violation of the compound nucleus assumption may occur in beta-delayed neutron emission. This impacts the neutron-emission probabilities and other properties of nuclei participating in the r-process. A model of neutron emission, which links the observed neutron emission probabilities to nuclear shell effects, is proposed.
Address [Heideman, J.; Grzywacz, R.; Xu, Z. Y.; Madurga, M.; Halverson, C.; King, T. T.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001053419100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5620
Permanent link to this record
 

 
Author Xu, Z.Y. et al; Algora, A.; Morales, A.I.
Title Beta-delayed neutron spectroscopy of 133In Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 1 Pages 014314 - 9pp
Keywords
Abstract The decay properties of 133In were studied in detail at the ISOLDE Decay Station. The implementation of the Resonance Ionization Laser Ion Source allowed separate measurements of its 9/2+ ground state (133gIn) and 1/2- isomer (133mIn). With the use of & beta;-delayed neutron and & gamma; spectroscopy, the decay strengths above the neutron separation energy were quantified in this neutron-rich nucleus for the first time. The allowed Gamow-Teller transition 9/2+ & RARR; 7/2+ was located at 5.93 MeV in the 133gIn decay with a log ft = 4.7(1). In addition, several neutron-unbound states were populated at lower excitation energies by the first-forbidden decays of 133g,mIn. We assigned spins and parities to those neutron-unbound states based on the & beta;-decay selection rules, the log ft values, and systematics.
Address [Xu, Z. Y.; Madurga, M.; Grzywacz, R.; King, T. T.; Halverson, C.; Heideman, J.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001062056700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5757
Permanent link to this record
 

 
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A.
Title β-delayed neutron emissions from N > 50 gallium isotopes Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 6 Pages 064307 - 15pp
Keywords
Abstract beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: yokoyama@cns.s.u-tokyo.ac.jp
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001159167500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5939
Permanent link to this record
 

 
Author Gjestvang, D. et al; Algora, A.
Title Examination of how properties of a fissioning system impact isomeric yield ratios of the fragments Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 6 Pages 064602 - 12pp
Keywords
Abstract The population of isomeric states in the prompt decay of fission fragments-so-called isomeric yield ratios (IYRs)-is known to be sensitive to the angular momentum J that the fragment emerged with, and may therefore contain valuable information on the mechanism behind the fission process. In this work, we investigate how changes in the fissioning system impact the measured IYRs of fission fragments to learn more about what parameters affect angular momentum generation. To enable this, a new technique for measuring IYRs is first demonstrated. It is based on the time of arrival of discrete gamma rays, and has the advantage that it enables the study of the IYR as a function of properties of the partner nucleus. This technique is used to extract the IYR of 134Te, strongly populated in actinide fission, from the three different fissioning systems: 232Th(n, f), 238U(n, f), at two different neutron energies, as well as 252Cf(sf). The impacts of changing the fissioning system, the compound nuclear excitation energy, the minimum J of the binary partner, and the number of neutrons emitted on the IYR of 134Te are determined. The decay code TALYS is used in combination with the fission simulation code FREYA to calculate the primary fragment angular momentum from the IYR. We find that the IYR of 134Te has a slope of 0.004 +/- 0.002 with increase in compound nucleus (CN) mass. When investigating the impact on the IYR of increased CN excitation energy, we find no change with an energy increase similar to the difference between thermal and fast fission. By varying the mass of the partner fragment emerging with 134Te, it is revealed that the IYR of 134Te is independent of the total amount of prompt neutrons emitted from the fragment pair. This indicates that neutrons carry minimal angular momentum away from the fission fragments. Comparisons with the FREYA+TALYS simulations reveal that the average angular momentum in 134Te following 238U(n, f) is 6.0 h over bar . This is not consistent with the value deduced from recent CGMF calculations. Finally, the IYR sensitivity to the angular momentum of the primary fragment is discussed. These results are not only important to help understanding the underlying mechanism in nuclear fission, but can also be used to constrain and benchmark fission models, and are relevant to the gamma -ray heating problem of reactors.
Address [Gjestvang, D.; Siem, S.; Nemer, J.; Paulsen, W.; Popovitch, Y.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway, Email: dorthea.gjestvang@fys.uio.no
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001160674400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5947
Permanent link to this record