toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
 

 
Author Zhai, Y.J.; Giare, W.; van de Bruck, C.; Di Valentino, E.; Mena, O.; Nunes, R.C. url  doi
openurl 
  Title A consistent view of interacting dark energy from multiple CMB probes Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 032 - 16pp  
  Keywords cosmological parameters from CMBR; dark energy theory  
  Abstract We analyze a cosmological model featuring an interaction between dark energy and dark matter in light of the measurements of the Cosmic Microwave Background released by three independent experiments: the most recent data by the Planck satellite and the Atacama Cosmology Telescope, and WMAP (9-year data). We show that different combinations of the datasets provide similar results, always favoring an interacting dark sector with a 95% C.L. significance in the majority of the cases. Remarkably, such a preference remains consistent when cross-checked through independent probes, while always yielding a value of the expansion rate H0 consistent with the local distance ladder measurements. We investigate the source of this preference by scrutinizing the angular power spectra of temperature and polarization anisotropies as measured by different experiments.  
  Address [Zhai, Yuejia; Giare, William; van de Bruck, Carsten; Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: yzhai13@sheffield.ac.uk;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066525900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5673  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Axion cold dark matter: Status after Planck and BICEP2 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages 043534 - 11pp  
  Keywords  
  Abstract We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon acoustic oscillation data, including those from the baryon oscillation spectroscopic survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario and for Delta(QCD) = 200 MeV, the full data set implies that the axion mass m(a) = 82.2 +/- 1.1 μeV [corresponding to the Peccei-Quinn symmetry being broken at a scale f(a) = (7.54 +/- 0.10) x 10(10) GeV], or m(a) = 76.6 +/- 2.6 μeV [f(a) = (8.08 +/- 0.27) x 10(10) GeV] when we allow for a nonstandard effective number of relativistic species N-eff. We also find a 2 sigma preference for N-eff > 3.046. The limit on the sum of neutrino masses is Sigma m(v) < 0.25 eV at 95% C.L. for N-eff = 3.046, or Sigma m(v) < 0.47 eV when N-eff is a free parameter. Considering extended scenarios where either the dark energy equation-of-state parameter w, the tensor spectral index n(t), or the running of the scalar index dn(s)/d ln k is allowed to vary does not change significantly the axion mass-energy density constraints. However, in the case of the full data set exploited here, there is a preference for a nonzero tensor index or scalar running, driven by the different tensor amplitudes implied by the Planck and BICEP2 observations. We also study the effect on our estimates of theoretical uncertainties, in particular the imprecise knowledge of the QCD scale Delta(QCD), in the calculation of the temperature-dependent axion mass. We find that in the simplest ADM scenario the Planck + WP data set implies that the axion mass m(a) = 63.7 +/- 1.2 μeV for Delta(QCD) = 400 MeV. We also comment on the possibility that axions do not make up for all the dark matter, or that the contribution of string-produced axions has been grossly underestimated; in that case, the values that we find for the mass can conservatively be considered as lower limits. Dark matter axions with mass in the 60-80 μeV (corresponding to an axion-photon coupling G(a gamma gamma) similar to 10(-14) GeV-1) range can, in principle, be detected by looking for axion-to-photon conversion occurring inside a tunable microwave cavity permeated by a high-intensity magnetic field, and operating at a frequency nu similar or equal to 15-20 GHz. This is out of the reach of current experiments like the axion dark matter experiment (limited to a maximum frequency of a few GHzs), but is, on the other hand, within the reach of the upcoming axion dark matter experiment-high frequency experiment that will explore the 4-40 GHz frequency range and then be sensitive to axion masses up to similar to 160 μeV.  
  Address [Di Valentino, Eleonora; Giusarma, Elena; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340890100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1893  
Permanent link to this record
 

 
Author Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages 043507 - 17pp  
  Keywords  
  Abstract We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.  
  Address [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347985100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2075  
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title Robustness of cosmological axion mass limits Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 12 Pages 123505 - 12pp  
  Keywords  
  Abstract We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.  
  Address [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000355623400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2253  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva