|   | 
Details
   web
Records
Author Athron, P.; Park, J.H.; Stockinger, D.; Voigt, A.
Title FlexibleSUSY-A spectrum generator generator for supersymmetric models Type Journal Article
Year 2015 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 190 Issue Pages 139-172
Keywords Sparticle; Supersymmetry; Higgs; Renormalization group equations
Abstract We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos. Program Summary Program title: FlexibleSUSY Catalogue identifier: AEVIv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEVIv10.html obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 129406 No. of bytes in distributed program, including test data, etc.: 854831 Distribution format: tar.gz Programming language: C++, Wolfram/Mathematica, FORTRAN, Bourne shell. Computer: Personal computer. Operating system: Tested on Linux 3.x, Mac OS X. Classification: 11.1, 11.6, 6.5. External routines: SARAH 4.0.4, Boost library, Eigen, LAPACK Nature of problem: Determining the mass spectrum and mixings for any supersymmetric model. The generated code must find simultaneous solutions to constraints which are specified at two or more different renormalization scales, which are connected by renormalization group equations forming a large set of coupled first-order differential equations. Solution method: Nested iterative algorithm and numerical minimization of the Higgs potential. Restrictions: The couplings must remain perturbative at all scales between the highest and the lowest boundary condition. FlexibleSUSY assumes that all couplings of the model are real (i.e. CP-conserving). Due to the modular nature of the generated code, adaption and extension to overcome restrictions in scope is quite straightforward. Running time: 0.06-0.2 seconds per parameter point.
Address [Athron, Peter] Univ Adelaide, ARC Ctr Excellence Particle Phys Tera Scale, Sch Chem & Phys, Adelaide, SA 5005, Australia, Email: Alexander.Voigt@desy.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000351645900012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2164
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107477 - 15pp
Keywords Astroparticle physics; High energy neutrinos; Monte Carlo event generator; Neutrino telescopes; Neutrino oscillations; KM3NeT; GENIE
Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between tracktype and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: distefano_c@lns.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000564482200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4520
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title The Control Unit of the KM3NeT Data Acquisition System Type Journal Article
Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 256 Issue Pages 107433 - 16pp
Keywords KM3NeT; Data acquisition control; Neutrino detector; Astroparticle detector; 07.05.Hd; 29.85.Ca
Abstract The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already taking data while incremental construction progresses. Data Acquisition Control software is operating off-shore detectors as well as testing and qualification stations for their components. The software, named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisition running. Interplay with the central database of the Collaboration is obtained in a way that allows for data taking even if Internet links fail. In order to simplify the management of computing resources in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT Control Unit software features a custom dynamic resource provisioning and failover technology, which is especially important for ensuring continuity in case of rare transient events in multi-messenger astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and has been successfully tested on several operating systems.
Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: cbozza@unisa.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000590251400011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4616
Permanent link to this record
 

 
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.
Title On the Magnetic Field of a Finite Solenoid Type Journal Article
Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.
Volume 59 Issue 4 Pages 7000106 - 6pp
Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics
Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.
Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0018-9464 ISBN Medium
Area Expedition Conference
Notes WOS:001006992700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5552
Permanent link to this record
 

 
Author Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F.
Title Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 1 Pages 381-386
Keywords Charged particle tracking; silicon detectors; solid state devices
Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000349672900025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2140
Permanent link to this record