toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Andringa, S. et al; Capozzi, F.; Sorel, M. url  doi
openurl 
  Title Low-energy physics in neutrino LArTPCs Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 3 Pages 033001 - 60pp  
  Keywords physics; neutrino; LArTPC  
  Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.  
  Address [Andringa, S.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal, Email: blittlej@iit.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000931327500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5502  
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L. url  doi
openurl 
  Title Electron scattering and neutrino physics Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 12 Pages 120501 - 34pp  
  Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering  
  Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.  
  Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001086874300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5748  
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G. doi  openurl
  Title Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 202 Issue Pages 110507 - 11pp  
  Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers  
  Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.  
  Address [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000870840600006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5392  
Permanent link to this record
 

 
Author Barrientos, L.; Borja-Lloret, M.; Casana, J.V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G. doi  openurl
  Title System characterization and performance studies with MACACO III Compton camera Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 208 Issue Pages 110922 - 13pp  
  Keywords Compton camera; Scintillator crystals; Silicon photomultipliers  
  Abstract The IRIS group of IFIC-Valencia has developed a Compton camera prototype. The system detectors are made of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. Two models of silicon photomultipliers arrays with different micro pixel pitch (25 and 50 μm) have been chosen as possible candidates to improve the response of the new system. Characterization studies with a 22Na point-like source have indicated that the 25 μm photodetector provided better performance in terms of energy resolution (5.2% FWHM at 511 keV) and angular resolution (6.9 degrees FWHM at 1275 keV), and more stability with temperature variations. In addition, MACACO III imaging capabilities have been assessed using a structure composed of thirty-seven 22Na point-like sources. Furthermore, in order to evaluate possible ways of improving the system performance, several studies have been carried out by means of simulations both in realistic and performance improved conditions. In this work, the system performance is evaluated for its future application in different areas.  
  Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Ros, A.; Roser, J.; Senra, C.; Solaz, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IF, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000962800400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5511  
Permanent link to this record
 

 
Author Oliver, S.; Vijande, J.; Tejedor-Aguilar, N.; Miro, R.; Rovira-Escutia, J.J.; Ballester, F.; Juste, B.; Carmona, V.; Felici, G.; Verdu, G.; Sanchis, E.; Conde, A.; Perez-Calatayud, J. doi  openurl
  Title Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization Type Journal Article
  Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 212 Issue Pages 111102 - 6pp  
  Keywords Intraoperative radiotherapy; Electron portable LinAc; Flattening filter; Dosimetry; Monte Carlo  
  Abstract Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.  
  Address [Oliver, S.; Miro, R.; Juste, B.; Verdu, G.] Univ Polite cn Vale ncia, Inst Segur Ind Radiofis & Medioambiental ISIRYM, Cami Vera S-N, Valencia 46022, Spain, Email: gverdu@iqn.upv.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026194900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5578  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva