toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
  Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 38 Issue 25 Pages 2350124 - 32pp  
  Keywords Framed standard model; phase transition; early Universe; cosmology  
  Abstract The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001099552500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5803  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title Search for new physics in semileptonic decays of K and B as implied by the g-2 anomaly in FSM Type Journal Article
  Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 38 Issue Pages 2350177 - 24pp  
  Keywords Framed standard model; light scalar boson; meson decays  
  Abstract The framed standard model (FSM), constructed to explain, with some success, why there should be three and apparently only three generations of quarks and leptons in nature falling into a hierarchical mass and mixing pattern,(10) suggests also, among other things, a scalar boson U, with mass around 17 MeV and small couplings to quarks and leptons,(11) which might explain(9) the g – 2 anomaly reported in experiment.(12) The U arises in FSM initially as a state in the predicted “hidden sector” with mass around 17 MeV, which mixes with the standard model (SM) Higgs h(W), acquiring thereby a coupling to quarks and leptons and a mass just below 17 MeV. The initial purpose of this paper is to check whether this proposal is compatible with experiment on semileptonic decays of Ks and Bs where the U can also appear. The answer to this we find is affirmative, in that the contribution of U to new physics as calculated in the FSM remains within the experimental bounds, but only if m(U) lies within a narrow range just below the unmixed mass. As a result from this, one has an estimate m(U) similar to 15-17 MeV for the mass of U, and from some further considerations the estimate Gamma(U) similar to 0.02 eV for its width, both of which may be useful for an eventual search for it in experiment. If found, it will be, for the FSM, not just the discovery of a predicted new particle, but the opening of a window into a whole “hidden sector” containing at least some, perhaps even the bulk, of the dark matter in the universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001180240500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5978  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
  Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 20 Issue 4 Pages 413-462  
  Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests  
  Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.  
  Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000290228200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 961  
Permanent link to this record
 

 
Author Oset, E.; Albaladejo, M.; Xie, J.J.; Ramos, A. url  doi
openurl 
  Title Recent developments on hadron interaction and dynamically generated resonances Type Journal Article
  Year 2014 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E  
  Volume 23 Issue 7 Pages 1461008 - 8pp  
  Keywords Hadron interaction; dynamically generated resonances  
  Abstract In this talk I report on the recent developments in the subject of dynamically generated resonances. In particular I discuss the gamma p -> K-0 Sigma+ and gamma n -> K-0 Sigma(0) reactions, with a peculiar behavior around the K*(0)Lambda threshold, due to a 1/2(-) resonance around 2035 MeV. Similarly, I discuss a BES experiment, J/psi -> eta K*(0) (K) over bar*(0) decay, which provides evidence for a new h(1) resonance around 1830 MeV that was predicted from the vector-vector interaction. A short discussion is then made about recent advances in the charm and beauty sectors.  
  Address [Oset, E.; Albaladejo, M.; Ramos, A.] Univ Valencia, Inst Invest Paterna, Ctr Mixto, Dept Fis Teor,CSIC, Valencia 46071, Spain, Email: oset@ific.uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0218-3013 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341934000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1946  
Permanent link to this record
 

 
Author Araujo Filho, A.A.; Reis, J.A.A.S.; Ghosh, S. url  doi
openurl 
  Title Quantum gases on a torus Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 20 Issue 10 Pages 2350178 - 19pp  
  Keywords Thermodynamic properties; non-Cartesian geometries; grand canonical ensemble; noninteracting and interacting quantum gases; spinless; bosons and fermion particles  
  Abstract This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.  
  Address [Araujo Filho, A. A.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988814200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5553  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva