toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS and CMS Collaborations (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Evidence for the Higgs Boson Decay to a Z Boson and a Photon at the LHC Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 2 Pages 021803 - 32pp  
  Keywords  
  Abstract The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton -proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb-1 for each experiment, at a center -of -mass energy of 13 TeV. The measured signal yield is 2.2 +/- 0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185794500011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6102  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Measurement of the Centrality Dependence of the Dijet Yield in p plus Pb Collisions at √sNN=8.16 TeV with the ATLAS Detector Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 10 Pages 102301 - 22pp  
  Keywords  
  Abstract ATLAS measured the centrality dependence of the dijet yield using 165 nb-1 of p + Pb data collected at root sNN = 8.16 TeV in 2016. The event centrality, which reflects the p + Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, RCP, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The RCP shows a scaling with the Bjorken x of the parton originating from the proton, xp, while no such trend is observed as a function of xPb. This analysis provides unique input to understanding the role of small proton spatial configurations in p + Pb collisions by covering parton momentum fractions from the valence region down to xp similar to 10-3 and xPb similar to 4 x 10-4.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202029400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6103  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Study of High-Transverse-Momentum Higgs Boson Production in Association with a Vector Boson in the qqbb Final State with the ATLAS Detector Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 13 Pages 131802 - 23pp  
  Keywords  
  Abstract This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in ffiffiproton-proton collisions at root root s= 13 TeV and corresponding to an integrated luminosity of 137fb(-1). The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into b (b) over bar. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ= 1.4(-0.9)(+1.0) and the corresponding cross section is 3.1 +/- 1.3(stat)(-1.4)(+1.8) (syst) pb.  
  Address [Fedin, O. L.; Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Kulchitsky, Y.; Myagkov, A. G.; Nikolaenko, V.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Smirnova, L. N.; Tikhomirov, V.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202030300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6121  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. doi  openurl
  Title A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider Type Journal Article
  Year 2012 Publication Science Abbreviated Journal Science  
  Volume 338 Issue 6114 Pages 1576-1582  
  Keywords  
  Abstract Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.  
  Address  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312533100043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1393  
Permanent link to this record
 

 
Author Affolder, A. et al; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Miñano, M.; Soldevila, U. doi  openurl
  Title Silicon detectors for the sLHC Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 658 Issue 1 Pages 11-16  
  Keywords Silicon particle detectors; Radiation damage; Irradiation; Charge collection efficiency  
  Abstract In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages.  
  Address [Barber, T.; Breindl, M.; Driewer, A.; Koehler, M.; Kuehn, S.; Parzefall, U.; Preiss, J.; Walz, M.; Wiik, L.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany, Email: Ulrich.Parzefall@physik.uni-freiburg.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297783300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 836  
Permanent link to this record
 

 
Author Unno, Y. et al; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti-Garcia, S.; Soldevila, U. doi  openurl
  Title Development of n(+) -in-p large-area silicon microstrip sensors for very high radiation environments-ATLAS12 design and initial results Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 765 Issue Pages 80-90  
  Keywords Silicon strip; n(+)-in-p; P-type; Radiation-tolerant; HL-LHC; PTP  
  Abstract We have been developing a novel radiation tolerant n(+)-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float zone wafers, where large area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 pm and slim edge space of 450 pm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.  
  Address [Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344621000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2002  
Permanent link to this record
 

 
Author Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W. doi  openurl
  Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 765 Issue Pages 252-257  
  Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade  
  Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.  
  Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344621000048 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2003  
Permanent link to this record
 

 
Author Benitez, V. et al; Bernabeu, J.; Garcia, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U. doi  openurl
  Title Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 833 Issue Pages 226-232  
  Keywords Silicon radiation detectors; Strip sensors; HL-LHC; ATLAS Upgrade; Inner Tracker (ITk); End-cap  
  Abstract The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-In stereo angle. In order to investigate these specific problems, the “petalet” prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITIc strip, community acquiring the necessary expertise to develop the full End-cap structure, the petal.  
  Address [Benitez, V.; Ullan, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.] CSIC, CNM, IMB, Campus Univ Bellaterra, Barcelona 08193, Spain, Email: miguel.ullan@imb-cnm.csic.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383818200032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2816  
Permanent link to this record
 

 
Author Fernandez-Tejero, J. et al; Soldevila, U. doi  openurl
  Title Humidity sensitivity of large area silicon sensors: Study and implications Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 978 Issue Pages 164406 - 6pp  
  Keywords Humidity sensitivity; Large area silicon sensors; Slim-edge; HL-LHC  
  Abstract The production of large area sensors is one of the main challenges that the ATLAS collaboration faces for the new Inner-Tracker full-silicon detector. During the prototype fabrication phase for the High Luminosity Large Hadron Collider upgrade, several ATLAS institutes observed indications of humidity sensitivity of large area sensors, even at relative humidities well below the dew point. Specifically, prototype Barrel and End-Cap silicon strip sensors fabricated in 6-inch wafers manifest a prompt decrease of the breakdown voltage when operating under high relative humidity, adversely affecting the performance of the sensors. In addition to the investigation of these prototype sensors, a specific fabrication batch with special passivation is also studied, allowing for a deeper understanding of the responsible mechanisms. This work presents an extensive study of this behaviour on large area sensors. The locations of the hotspots at the breakdown voltage at high humidity are revealed using different infrared thermography techniques. Several palliative treatments are attempted, proving the influence of sensor cleaning methods, as well as baking, on the device performance, but no improvement on the humidity sensitivity was achieved. Furthermore, a study of the incidence of the sensitivity in different batches is also presented, introducing a hypothesis of the origins of the humidity sensitivity associated to the sensor edge design, together with passivation thickness and conformity. Several actions to be taken during sensor production and assembly are extracted from this study, in order to minimize the impact of humidity sensitivity on the performance of large area silicon sensors for High Energy Physics experiments.  
  Address [Fernandez-Tejero, J.; Avino, O.; Fleta, C.; Ullan, M.; Vellvehi, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000560076700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4504  
Permanent link to this record
 

 
Author Fernandez-Tejero, J.; Bartl, U.; Docke, M.; Fadeyev, V.; Fleta, C.; Hacker, J.; Hommels, B.; Lacasta, C.; Parzefall, U.; Soldevila, U.; Stocker, G.; Ullan, M.; Unno, Y. doi  openurl
  Title Design and evaluation of large area strip sensor prototypes for the ATLAS Inner Tracker detector Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 981 Issue Pages 164536 - 6pp  
  Keywords ATLAS; Silicon strip sensors; Large area silicon sensors; Layout design; Prototype evaluation; Market survey  
  Abstract The ATLAS community is facing the last stages prior to the production of the upgraded silicon strip Inner Tracker for the High-Luminosity Large Hadron Collider. An extensive Market Survey was carried out in order to evaluate the capability of different foundries to fabricate large area silicon strip sensors, satisfying the ATLAS specifications. The semiconductor manufacturing company, Infineon Technologies AG, was one of the two foundries, along with Hamamatsu Photonics K.K., that reached the last stage of the evaluation for the production of the new devices. The full prototype wafer layout for the participation of Infineon, called ATLAS17LS-IFX, was designed using a newly developed Python-based Automatic Layout Generation Tool, able to rapidly design sensors with different characteristics and dimensions based on a few geometrical and technological input parameters. This work presents the layout design process and the results obtained from the evaluation of the new Infineon large area sensors before and after proton and neutron irradiations, up to fluences expected in the inner layers of the future ATLAS detector.  
  Address [Fernandez-Tejero, J.; Fleta, C.; Ullan, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581799800023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4579  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva