|   | 
Details
   web
Records
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A.
Title Observable flavor violation from spontaneous lepton number breaking Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 098 - 31pp
Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries
Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000744514600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5084
Permanent link to this record
 

 
Author de Gouvea, A.; De Romeri, V.; Ternes, C.A.
Title Combined analysis of neutrino decoherence at reactor experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 042 - 12pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract Reactor experiments are well suited to probe the possible loss of coherence of neutrino oscillations due to wave-packets separation. We combine data from the short-baseline experiments Daya Bay and the Reactor Experiment for Neutrino Oscillation (RENO) and from the long baseline reactor experiment KamLAND to obtain the best current limit on the reactor antineutrino wave-packet width, sigma > 2.1 x 10(-4) nm at 90% CL. We also find that the determination of standard oscillation parameters is robust, i.e., it is mostly insensitive to the presence of hypothetical decoherence effects once one combines the results of the different reactor neutrino experiments.
Address [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA, Email: degouvea@northwestern.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762304800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5150
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Hati, C.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic neutrino masses with gauged matter parity and gauge coupling unification Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 034 - 25pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.
Address [Carcamo Hernandez, A. E.] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000766168700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5162
Permanent link to this record
 

 
Author Agarwalla, S.K.; Huber, P.; Tang, J.A.; Winter, W.
Title Optimization of the Neutrino Factory, revisited Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 120 - 45pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We perform the baseline and energy optimization of the Neutrino Factory including the latest simulation results on the magnetized iron detector (MIND). We also consider the impact of tau decays, generated by v(mu) -> v(tau) or v(e) -> v(tau) appearance, on the mass hierarchy, CP violation, and theta(13) discovery reaches, which we find to be negligible for the considered detector. For the baseline-energy optimization for small sin(2) 2 theta(13), we qualitatively recover the results with earlier simulations of the MIND detector. We find optimal baselines of about 2 500km to 5 000km for the CP violation measurement, where now values of E-mu as low as about 12 GeV may be possible. However, for large sin(2) 2 theta(13), we demonstrate that the lower threshold and the backgrounds reconstructed at lower energies allow in fact for muon energies as low as 5 GeV at considerably shorter baselines, such as FNAL-Homestake. This implies that with the latest MIND analysis, low-and high-energy versions of the Neutrino Factory are just two different versions of the same experiment optimized for different parts of the parameter space. Apart from a green-field study of the updated detector performance, we discuss specific implementations for the two-baseline Neutrino Factory, where the considered detector sites are taken to be currently discussed underground laboratories. We find that reasonable setups can be found for the Neutrino Factory source in Asia, Europe, and North America, and that a triangular-shaped storage ring is possible in all cases based on geometrical arguments only.
Address [Agarwalla, Sanjib K.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287937700037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 551
Permanent link to this record
 

 
Author Donini, A.; Gomez-Cadenas, J.J.; Meloni, D.
Title The tau-contamination of the golden muon sample at the Neutrino Factory Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 095 - 16pp
Keywords Neutrino Physics; Beyond Standard Model; CP violation
Abstract We study the contribution of nu(e) -> nu(tau) -> tau -> μtransitions to the wrong-sign muon sample of the golden channel of the Neutrino Factory. Muons from tau decays are not really a background, since they contain information from the oscillation signal, and represent a small fraction of the sample. However, if not properly handled they introduce serious systematic error, in particular if the detector/analysis are sensitive to muons of low energy. This systematic effect is particularly troublesome for large theta(13) >= 1 degrees and prevents the use of the Neutrino Factory as a precision facility for large theta(13). Such a systematic error disappears if the tau contribution to the golden muon sample is taken into account. The fact that the fluxes of the Neutrino Factory are exactly calculable permits the knowledge of the tau sample due to the nu(e) -> nu(tau) oscillation. We then compute the contribution to the muon sample arising from this sample in terms of the apparent muon energy. This requires the computation of a migration matrix M-ij which describes the contributions of the tau neutrinos of a given energy E-i, to the muon neutrinos of an apparent energy E-j. We demonstrate that applying M-ij to the data permits the full correction of the otherwise intolerable systematic error.
Address [Donini, A.] Univ Autonoma Madrid, CSIC, IFT, E-28049 Madrid, Spain, Email: andrea.donini@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287939200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 621
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J.
Title Baryogenesis from a right-handed neutrino condensate Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 097 - 15pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics
Abstract We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 622
Permanent link to this record
 

 
Author Bustamante, M.; Gago, A.M.; Pena-Garay, C.
Title Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 066 - 28pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We have studied the consequences of breaking the CPT symmetry in the neutrino sector, using the expected high-energy neutrino flux from distant cosmological sources such as active galaxies. For this purpose we have assumed three different hypotheses for the neutrino production model, characterised by the flavour fluxes at production phi(0)(e) : phi(0)(mu) : phi(0)(tau) = 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0, and studied the theoretical and experimental expectations for the muon-neutrino flux at Earth, phi(mu), and for the flavour ratios at Earth, R = phi(mu)/phi(e) and S = phi(tau)/phi(mu). CPT violation (CPTV) has been implemented by adding an energy-independent term to the standard neutrino oscillation Hamiltonian. This introduces three new mixing angles, two new eigenvalues and three new phases, all of which have currently unknown values. We have varied the new mixing angles and eigenvalues within certain bounds, together with the parameters associated to pure standard oscillations. Our results indicate that, for the models 1 : 2 : 0 and 0 : 1 : 0, it might be possible to find large deviations of phi(mu), R, and S between the cases without and with CPTV, provided the CPTV eigenvalues lie within 10(-29) – 10(-27) GeV, or above. Moreover, if CPTV exists, there are certain values of R and S that can be accounted for by up to three production models. If no CPTV were observed, we could set limits on the CPTV eigenvalues of the same order. Detection prospects calculated using IceCube suggest that for the models 1 : 2 : 0 and 0 : 1 : 0, the modifications due to CPTV are larger and more clearly separable from the standard-oscillations predictions. We conclude that IceCube is potentially able to detect CPTV but that, depending on the values of the CPTV parameters, there could be a mis-determination of the neutrino production model.
Address [Bustamante, M.; Gago, A. M.] Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru, Email: mbustamante@pucp.edu.pe
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000277473100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 455
Permanent link to this record
 

 
Author Casas, J.A.; Moreno, J.M.; Rius, N.; Ruiz de Austri, R.; Zaldivar, B.
Title Fair scans of the seesaw. Consequences for predictions on LFV processes Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 034 - 22pp
Keywords Neutrino Physics; Supersymmetric Standard Model
Abstract We give a straightforward procedure to scan the seesaw parameter-space, using the common “R-parametrization”, in a complete way. This includes a very simple rule to incorporate the perturbativity requirement as a condition for the entries of the R-matrix. As a relevant application, we show that the somewhat propagated belief that BR(mu -> e, gamma) in supersymmetric seesaw models depends strongly on the value of theta(13) is an “optical effect” produced by incomplete scans, and does not hold after a careful analytical and numerical study. When the complete scan is done, BR(mu -> e, gamma) gets very insensitive to theta(13). This holds even if the right-handed neutrino masses are kept constant or under control (as is required for succesful leptogenesis). In most cases the values of BR(mu -> e, gamma) are larger than the experimental upper bound. Including (unflavoured) leptogenesis does not introduce any further dependence on theta(13), although decreases the typical value of BR(mu -> e, gamma).
Address [Alberto Casas, J.; Moreno, Jesus M.; Zaldivar, Bryam] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: alberto.casas@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200034 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 612
Permanent link to this record
 

 
Author Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N.
Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 014 - 14pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.
Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 611
Permanent link to this record
 

 
Author Hirsch, M.; Kernreiter, T.; Romao, J.C.; del Moral, A.V.
Title Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 103 - 21pp
Keywords Rare Decays; Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model
Abstract We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μ-> e gamma and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.
Address [Hirsch, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000273959700030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 509
Permanent link to this record