|   | 
Details
   web
Records
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.
Title Correspondence between modified gravity and general relativity with scalar fields Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 4 Pages 044040 - 15pp
Keywords
Abstract We describe a novel procedure to map the field equations of nonlinear Ricci-based metric-affine theories of gravity, coupled to scalar matter described by a given Lagrangian, into the field equations of general relativity coupled to a different scalar field Lagrangian. Our analysis considers examples with a single and N real scalar fields, described either by canonical Lagrangians or by generalized functions of the kinetic and potential terms. In particular, we consider several explicit examples involving foRthorn theories and the Eddington-inspired Born-Infeld gravity model, coupled to different scalar field Lagrangians. We show how the nonlinearities of the gravitational sector of these theories can be traded to nonlinearities in the matter fields and how the procedure allows to find new solutions on both sides of the correspondence. The potential of this procedure for applications of scalar field models in astrophysical and cosmological scenarios is highlighted.
Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.cdu.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000459210600012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3914
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R.
Title Global monopole in Palatini f(R) gravity Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 6 Pages 064053 - 11pp
Keywords
Abstract We consider the space-time metric generated by a global monopole in an extension of general relativity (GR) of the form f(R) = R – lambda R-2. The theory is formulated in the metric-affine (or Palatini) formalism, and exact analytical solutions are obtained. For lambda < 0, one finds that the solution has the same characteristics as the Schwarzschild black hole with a monopole charge in Einstein's GR. For lambda > 0, instead, the metric is more closely related to the Reissner-Nordstrom metric with a monopole charge and, in addition, it possesses a wormhole-like structure that allows for the geodesic completeness of the spacetime. Our solution recovers the expected limits when lambda = 0 and also at the asymptotic far limit. The angular deflection of light in this space-time in the weak field regime is also calculated.
Address [Nascimento, J. R.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000462920100010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3966
Permanent link to this record
 

 
Author Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B.
Title Absorption by black hole remnants in metric-affine gravity Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 2 Pages 024016 - 12pp
Keywords
Abstract Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity. These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: adna.delhom@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000474874900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4075
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A.
Title Minimum main sequence mass in quadratic Palatini f(R) gravity Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 4 Pages 044020 - 9pp
Keywords
Abstract General relativity yields an analytical prediction of a minimum required mass of roughly similar to 0.08-0.09 M-circle dot for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold ( brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini f(R) gravity and show that the corresponding Newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strengthening of the gravitational interaction inside astrophysical bodies. This fact modifies the general relativity prediction for this minimum main sequence mass. Through a crude analytical modeling we use this result in order to constraint a combination of the quadratic f(R) gravity parameter and the central density according to astrophysical observations.
Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000480390800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4108
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R.
Title Nonlinear sigma-models in the Eddington-inspired Born-Infeld gravity Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 064043 - 11pp
Keywords
Abstract In this paper we consider two different nonlinear sigma-models minimally coupled to Eddington-inspired Born-Infeld gravity. We show that the resultant geometries represent minimal modifications with respect to those found in GR, though with important physical consequences. In particular, wormhole structures always arise, though this does not guarantee by itself the geodesic completeness of those space-times. In one of the models, quadratic in the canonical kinetic term, we identify a subset of solutions which are regular everywhere and are geodesically complete. We discuss characteristic features of these solutions and their dependence on the relationship between mass and global charge.
Address [Nascimento, J. R.; Porfirio, P. J.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000521099300008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4344
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D.; Rustam, A.
Title Structure and stability of traversable thin-shell wormholes in Palatini f(R) gravity Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 10 Pages 104012 - 11pp
Keywords
Abstract We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells in the context of Palatini f(R) gravity. Using a suitable junction formalism for these theories we find that the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation of state to be that of massless stress-energy fields, contrary to the general relativistic and metric f(R) cases. Another major difference is that the surface energy density threading the thin shell, needed in order to sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically grafting Schwarzschild space-times and show that these configurations are always linearly unstable. However, surgically joined Reissner-Nordstrom space-times allow for linearly stable, traversable thin-shell wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given by y = Q(2)/M-2, satisfies the constraint 1 < y < 9/8 (corresponding to overcharged Reissner-Nordstrom configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of the (dimensionless) radius of the shell x(0) = R/M.
Address [Lobo, Francisco S. N.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, Edificio C8,Campo Grande, P-1749016 Lisbon, Portugal, Email: fslobo@fc.ul.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000587286200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4596
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G.
Title Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 12 Pages 124031
Keywords
Abstract We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and topologicity can be independently accommodated by a suitable choice of the parameters featuring this new Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time singularities, but we show that such critical points do not spoil the geodesic completeness and wave regularity of these spacetimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000661819200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4870
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A.
Title Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 2 Pages 024045 - 8pp
Keywords
Abstract We present the nonrelativistic limit of the stellar structure equations of Ricci-based gravities, a family of metric-affine theories whose Lagrangian is built via contractions of the metric with the Ricci tensor of an a priori independent connection. We find that this limit is characterized by four parameters that arise in the expansion of several geometric quantities in powers of the stress-energy tensor of the matter fields. We discuss the relevance of this result for the phenomenology of nonrelativistic stars, such as main-sequence stars as well as several substellar objects.
Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000674579300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4914
Permanent link to this record
 

 
Author Rosa, J.L.; Lobo, F.S.N.; Olmo, G.J.
Title Weak-field regime of the generalized hybrid metric-Palatini gravity Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 12 Pages 124030 - 11pp
Keywords
Abstract In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the metric and both scalar fields. The effective Newton constant and the PPN parameter. of the theory are extracted after transforming back to the (original) Jordan frame. Two particular cases where the general method ceases to be applicable are approached separately. A comparison of these results with observational constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.
Address [Rosa, Joao Luis] Univ Tartu, Inst Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: joaoluis92@gmail.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000762071800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5142
Permanent link to this record
 

 
Author Magalhaes, R.B.; Crispino, L.C.B.; Olmo, G.J.
Title Compact objects in quadratic Palatini gravity generated by a free scalar field Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 6 Pages 064007 - 15pp
Keywords
Abstract We study the correspondence that connects the space of solutions of general relativity (GR) with that of Ricci-based gravity theories (RBGs) of the f(R, Q) type in the metric-affinc formulation, where Q = R(mu nu)R(mu nu). We focus on the case of scalar matter and show that when one considers a free massless scalar in the GR frame, important simplifications arise that allow one to establish the correspondence for arbitrary f (R, Q) Lagrangian. We particularize the analysis to a quadratic f (R, Q) theory and use the spherically symmetric, static solution of Jannis-Newman-Winicour as seed to generate new compact objects in our target theory. We find that two different types of solutions emerge, one representing naked singularities and another corresponding to asymmetric wormholes with bounded curvature scalars everywhere. The latter solutions, nonetheless, are geodesically incomplete.
Address [Magalhaes, Renan B.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000767103000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5171
Permanent link to this record