toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Oldengott, I.M.; Barenboim, G.; Kahlen, S.; Salvado, J.; Schwarz, D.J. url  doi
openurl 
  Title How to relax the cosmological neutrino mass bound Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 049 - 18pp  
  Keywords neutrino masses from cosmology; cosmological neutrinos; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract We study the impact of non-standard momentum distributions of cosmic neutrinos on the anisotropy spectrum of the cosmic microwave background and the matter power spectrum of the large scale structure. We show that the neutrino distribution has almost no unique observable imprint, as it is almost entirely degenerate with the effective number of neutrino flavours, N-eff, and the neutrino mass, m(nu). Performing a Markov chain Monte Carlo analysis with current cosmological data, we demonstrate that the neutrino mass bound heavily depends on the assumed momentum distribution of relic neutrinos. The message of this work is simple and has to our knowledge not been pointed out clearly before: cosmology allows that neutrinos have larger masses if their average momentum is larger than that of a perfectly thermal distribution. Here we provide an example in which the mass limits are relaxed by a factor of two.  
  Address [Oldengott, Isabel M.; Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: isabel.oldengott@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466578400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4001  
Permanent link to this record
 

 
Author Donini, A.; Palomares-Ruiz, S.; Salvado, J. url  doi
openurl 
  Title Neutrino tomography of Earth Type Journal Article
  Year 2019 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 15 Issue 1 Pages 37-40  
  Keywords  
  Abstract Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale(1). The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrinonucleon cross-section is large enough to make the absorption probability non-negligible(2). Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profiles(3-7). This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data-one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope(8). Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth's internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control.  
  Address [Donini, Andrea; Palomares-Ruiz, Sergio; Salvado, Jordi] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: sergiopr@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454733100017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3863  
Permanent link to this record
 

 
Author Bai, Y.; Lu, R.; Lu, S.D.; Salvado, J.; Stefanek, B.A. url  doi
openurl 
  Title Three twin neutrinos: Evidence from LSND and MiniBooNE Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 7 Pages 073004 - 11pp  
  Keywords  
  Abstract We construct a neutrino model of three twin neutrinos in light of the neutrino appearance excesses at LSND and MiniBooNE. The model, which includes a twin parity, naturally predicts identical lepton Yukawa structures in the Standard Model and the twin sectors. As a result, a universal mixing angle controls all three twin neutrino couplings to the Standard Model charged leptons. This mixing angle is predicted to be the ratio of the electroweak scale over the composite scale of the Higgs boson and has the right order of magnitude to fit the data. The heavy twin neutrinos decay within the experimental lengths into active neutrinos plus a long-lived Majoron and can provide a good fit, at around the 4 sigma confidence level, to the LSND and MiniBooNE appearance data while simultaneously satisfying the disappearance constraints. For the Majorana neutrino case, the fact that neutrinos have a larger scattering cross section than antineutrinos provides a natural explanation to MiniBooNE's observation of a larger antineutrino appearance excess.  
  Address [Bai, Yang; Lu, Ran; Lu, Sida; Stefanek, Ben A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373581900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2616  
Permanent link to this record
 

 
Author Esteban, I.; Mena, O.; Salvado, J. url  doi
openurl 
  Title Nonstandard neutrino cosmology dilutes the lensing anomaly Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 8 Pages 083516 - 9pp  
  Keywords  
  Abstract Despite the impressive success of the standard cosmological model, several anomalies defy its triumph. Among them is the so-called lensing anomaly: The Planck satellite observes stronger cosmic microwave background (CMB) gravitational lensing than expected. The role of neutrinos in this anomaly has been mostly overlooked, despite their key role in CMB lensing, because in the standard scenario they tend to increase the tension. Here, we show that this strongly depends on the assumed neutrino equation of state. We demonstrate that if neutrinos have yet undiscovered long-range interactions, the lensing pattern is significantly affected, rendering the lensing anomaly as a statistical fluctuation. Our results, thus, open up a window to link anomalous CMB lensing with present and future cosmological, astrophysical, and laboratory measurements of neutrino properties.  
  Address [Esteban, Ivan] Ohio State Univ, Ctr Cosmol & AstroParticle Phys CCAPP, Columbus, OH 43210 USA, Email: esteban.6@osu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886611900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5415  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva