|   | 
Details
   web
Records
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J. J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J. D.; Zuñiga, J.
Title KM3NeT broadcast optical data transport system Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 2 Pages T02001 - 22pp
Keywords Cherenkov detectors; Data Processing; Large detector systems for particle and astroparticle physics; Optics
Abstract The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000989217700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5565
Permanent link to this record
 

 
Author Ackermann, M. et al; Garcia Soto, A.
Title High-energy and ultra-high-energy neutrinos: A Snowmass white paper Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 36 Issue Pages 55-110
Keywords
Abstract Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.
Address [Ackermann, Markus] DESY, D-15738 Zeuthen, Germany, Email: markus.ackermann@desy.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000890744900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5434
Permanent link to this record
 

 
Author Garcia Soto, A.; Garg, D.; Reno, M.H.; Arguelles, C.A.
Title Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 033009 - 9pp
Keywords
Abstract The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.
Address [Garcia-Soto, A.; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5557
Permanent link to this record
 

 
Author Wilkinson, C.; Garcia Soto, A.
Title Low-ν method with LHC neutrinos Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 3 Pages 033010 - 19pp
Keywords
Abstract The Forward Physics Facility (FPF) plans to use neutrinos produced at the Large Hadron Collider to make a variety of measurements at previously unexplored TeV energies. Its primary goals include precision measurements of the neutrino cross section and using the measured neutrino flux both to uncover information about far-forward hadron production and to search for various beyond standard model scenarios. However, these goals have the potential to conflict: Extracting information about the flux or cross section relies upon an assumption about the other. In this paper, we demonstrate that the FPF can use the low-nu method-a technique for constraining the flux shape by isolating neutrino interactions with low energy transfer to the nucleus-to break this degeneracy. We show that the low-nu method is effective for extracting the nu μflux shape, in a model-independent way. We discuss its application for extracting the nu over bar μflux shape but find that this is significantly more model dependent. Finally, we explore the precision to which the nu μflux shape could be constrained at the FPF for a variety of proposed detector options. We find that the precision would be sufficient to discriminate between various realistic flux models.
Address [Wilkinson, C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwilkinson@lbl.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001183228500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5986
Permanent link to this record