toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author El-Neaj, Y.A. et al; Bernabeu, J. url  doi
openurl 
  Title AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
  Year 2020 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.  
  Volume 7 Issue 1 Pages 6 - 27pp  
  Keywords  
  Abstract We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126  
  Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk  
  Corporate Author Thesis  
  Publisher Springeropen Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2662-4400 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519468200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4325  
Permanent link to this record
 

 
Author Schaffter, T. et al; Albiol, F.; Caballero, L. doi  openurl
  Title Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Type Journal Article
  Year 2020 Publication JAMA Network Open Abbreviated Journal JAMA Netw. Open  
  Volume 3 Issue 3 Pages e200265 - 15pp  
  Keywords  
  Abstract Importance Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results Overall, 144231 screening mammograms from 85580 US women (952 cancer positive <= 12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166578 examinations from 68008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. Question How do deep learning algorithms perform compared with radiologists in screening mammography interpretation? Findings In this diagnostic accuracy study using 144231 screening mammograms from 85580 women from the United States and 166578 screening mammograms from 68008 women from Sweden, no single artificial intelligence algorithm outperformed US community radiologist benchmarks; including clinical data and prior mammograms did not improve artificial intelligence performance. However, combining best-performing artificial intelligence algorithms with single-radiologist assessment demonstrated increased specificity. Meaning Integrating artificial intelligence to mammography interpretation in single-radiologist settings could yield significant performance improvements, with the potential to reduce health care system expenditures and address resource scarcity experienced in population-based screening programs. This diagnostic accuracy study evaluates whether artificial intelligence can overcome human mammography interpretation limits with a rigorous, unbiased evaluation of machine learning algorithms.  
  Address [Schaffter, Thomas; Hoff, Bruce; Yu, Thomas; Neto, Elias Chaibub; Friend, Stephen; Guinney, Justin] Sage Bionetworks, Computat Oncol, Seattle, WA USA, Email: gustavo@us.ibm.com  
  Corporate Author Thesis  
  Publisher Amer Medical Assoc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2574-3805 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519249800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4683  
Permanent link to this record
 

 
Author LHC BSM Reinterpretation Forum (Abdallah, W. et al); Mitsou, V.A.; Sanz, V. url  doi
openurl 
  Title Reinterpretation of LHC results for new physics: status and recommendations after run 2 Type Journal Article
  Year 2020 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 9 Issue 2 Pages 022 - 45pp  
  Keywords  
  Abstract We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.  
  Address [Abdallah, Waleed; Dutta, Juhi] Harish Chandra Res Inst HBNI, Allahabad 211019, Uttar Pradesh, India, Email: Andy.Buckley@glasgow.ac.uk;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000573102600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4547  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Combined measurements of Higgs boson production and decay using up to 80 fb(-1) of proton-proton collision data at root S=13 TeV collected with the ATLAS experiment Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 1 Pages 012002 - 48pp  
  Keywords  
  Abstract Combined measurements of Higgs boson production cross sections and branching fractions arc presented. The combination is based on the analyses of the Higgs boson decay modes H -> gamma gamma, ZZ*, WW*, tau tau, b (b) over bar, μmu, searches for decays into invisible final states, and on measurements of off-shell Higgs boson production. Up to 79.8 fb(-1) of proton-proton collision data collected at root S = 13 TeV with the ATLAS detector are used. Results are presented for the gluon-gluon fusion and vector-boson fusion processes, and for associated production with vector bosons or top-quarks. The global signal strength is determined to be μ= 1.11(-0.08)(+0.09). The combined measurement yields an observed (expected) significance for the vector-boson fusion production process of 6.5 sigma (5.3 sigma). Measurements in kinematic regions defined within the simplified template cross section framework are also shown. The results are interpreted in terms of modifiers applied to the Standard Model couplings of the Higgs boson to other particles, and are used to set exclusion limits on parameters in two-Higgs-doublet models and in the simplified minimal supersynunetric Standard Model. No significant deviations from Standard Model predictions are observed.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505485600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4245  
Permanent link to this record
 

 
Author Sakai, S.; Liang, W.H.; Toledo, G.; Oset, E. url  doi
openurl 
  Title J/psi -> gamma pi pi, gamma pi(0)eta reactions and the f(0)(980) and a(0)(980) resonances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 1 Pages 014005 - 9pp  
  Keywords  
  Abstract We study the J/psi -> gamma pi(+)pi(-), gamma pi(0)eta reactions from the perspective that they come from the J/psi -> phi(omega)pi(+)pi(-), rho(0)pi(0)eta reactions, where the rho(0), psi, and phi get converted into a photon via vector meson dominance. Using models successfully used previously to study the J/psi -> omega(phi)pi pi reactions, we make determinations of the invariant mass distributions for pi(+)pi(-) in the regions of the f(0)(500), f(0)(980), and for pi(0)eta in the region of the a(0)(980). The integrated differential widths lead to branching ratios below present upper bounds, but they are sufficiently large for future check in updated facilities.  
  Address [Sakai, S.; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: shsakai@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000506592500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva