toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
  Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.  
  Volume 68 Issue 7 Pages 688-697  
  Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions  
  Abstract We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2095-9273 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000985290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5520  
Permanent link to this record
 

 
Author Borja, E.F.; Garay, I.; Vidotto, F. url  doi
openurl 
  Title Learning about Quantum Gravity with a Couple of Nodes Type Journal Article
  Year 2012 Publication Symmetry Integrability and Geometry-Methods and Applications Abbreviated Journal Symmetry Integr. Geom.  
  Volume 8 Issue Pages 015 - 44pp  
  Keywords discrete gravity; canonical quantization; spinors; spinfoam; quantum cosmology  
  Abstract Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.  
  Address [Borja, Enrique F.; Garay, Inaki] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany, Email: efborja@theorie3.physik.uni-erlangen.de;  
  Corporate Author Thesis  
  Publisher Natl Acad Sci Ukraine, Inst Math Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1815-0659 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303831400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1018  
Permanent link to this record
 

 
Author Liang, W.H.; Sakai, S.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title Triangle singularity enhancing isospin violation in (B)over-bar(s)(0)-> J/psi pi(0)f(0)(980) Type Journal Article
  Year 2018 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 42 Issue 4 Pages 044101 - 9pp  
  Keywords triangle singularity; light scalar meson; isospin violation; bottom meson decay  
  Abstract We perform calculations for the (B) over bar (0)(s)-> J/psi pi(0)f(0)(980) and (B) over bar (0)(s)-> J/psi pi(0)a(0)(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c., followed by the decay K*-> K pi and a further fusion of K (K) over bar into the f(0)(980) or a(0)(980). We show that the mechanism develops a singularity around the pi(0)f(0)(980) or pi(0)a(0)(980) invariant mass of 1420 MeV, where the pi(0)f(0) and pi(0)a(0) decay modes are magnified and also the ratio of pi(0)f(0) to pi(0)a(0) production. Using experimental information for the (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons.  
  Address [Liang, Wei-Hong] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430884300013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3573  
Permanent link to this record
 

 
Author Debastiani, V.R.; Navarra, F.S. url  doi
openurl 
  Title A non-relativistic model for the [cc][(c)over-bar(c)over-bar] tetraquark Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 1 Pages 013105 - 20pp  
  Keywords tetraquark; charmonium; diquark-antidiquark; nonrelativistic; spin  
  Abstract We use a non-relativistic model to study the spectroscopy of a tetraquark composed of [cc][(c) over bar(c) over bar] in a diquark-antidiquark configuration. By numerically solving the Schrodinger equation with a Cornell-inspired potential, we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the c (c) over bar spectrum and are also extended to the interaction between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the diquark-antidiquark system, despite the heavy diquark mass, and also that the diquark has a finite size if treated in the same way as the c (c) over bar systems. We find that the lowest S-wave T-4c tetraquarks might be below their thresholds of spontaneous dissociation into low-lying charmonium pairs, while orbital and radial excitations would be mostly above the corresponding charmonium pair thresholds. Finally, we repeat the calculations without the confining part of the potential and obtain bound diquarks and bound tetraquarks. This might be relevant to the study of exotic charmonium in the quark-gluon plasma. The T4c states could be investigated in the forthcoming experiments at the LHC and Belle II.  
  Address [Debastiani, V. R.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454936600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3865  
Permanent link to this record
 

 
Author Li, J.T.; Lin, J.X.; Zhang, G.J.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title The (B)over-bar(s)(0) -> J/psi pi(0)eta decay and the a(0)(980)- f(0)(980) mixing Type Journal Article
  Year 2022 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 46 Issue 8 Pages 083108 - 6pp  
  Keywords strange B meson decay; isospin violation; a(0)(980)-f(0)(980) mixing; hadronic structure  
  Abstract We study the (B) over bar (0)(s) -> J/psi f(0)(980) and (B) over bar (0)(s) -> J/psi a(0)(980) reactions, and pay attention to the different sources of isospin violation and mixing of f(0)(980) and a(0)(980) resonances where these resonances are dynamically generated from meson-meson interactions. We fmd that the main cause of isospin violation is isospin breaking in the meson-meson transition T matrices, and the other source is that the loops involving kaons in the production mechanism do not cancel due to the different masses of charged and neutral kaons. We obtain a branching ratio for a(0)(980) production of the order of 5 x 10(-6) . Future experiments can address this problem, and the production rate and shape of the pi(0)eta mass distribution will definitely help to better understand the nature of scalar resonances.  
  Address [Li, Jia-Ting; Lin, Jia-Xin; Zhang, Gong-Jie; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: liangwh@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829561600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5306  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva