toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Dosimetry revisited for the HDR Ir-192 brachytherapy source model mHDR-v2 Type Journal Article
  Year 2011 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 38 Issue 1 Pages 487-494  
  Keywords Ir-192; brachytherapy; dosimetry; TG-43; PSS model; MCNP5; PENELOPE2008; GEANT4  
  Abstract Purpose: Recently, the manufacturer of the HDR Ir-192 mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from 192Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r >= 0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r >= 0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r >= 0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate. c 2011 American Association of Physicists in Medicine.  
  Address [Granero, Domingo] Hosp Gen Univ, Dept Radiat Phys, ERESA, E-46014 Valencia, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285769800050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 557  
Permanent link to this record
 

 
Author Granero, D.; Perez-Calatayud, J.; Vijande, J.; Ballester, F.; Rivard, M.J. doi  openurl
  Title Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations Type Journal Article
  Year 2014 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 41 Issue 2 Pages 021703 - 8pp  
  Keywords HDR; brachytherapy; skin; Monte Carlo; Geant4; Co-60; Ir-192; Yb-169  
  Abstract Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm x 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR Co-60 and Ir-192 sources and a hypothetical Yb-169 source were considered. The Geant4Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm x 5 cm Ir-192 superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about -3%. When the source was positioned at the skin surface, dose differences were smaller than -1% for Co-60 and Ir-192, yet -3% for Yb-169. For the interstitial implant, dose differences at the skin surface were -7% for Co-60, -0.6% for Ir-192, and -2.5% for Yb-169. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either Co-60 and Ir-192. For lower energy radionuclides like Yb-169, bolus may be needed; and (iii) for the interstitial case, at least a 0.1 cm bolus is advised for Co-60 to avoid underdosing superficial target layers. For Ir-192 and Yb-169, no bolus is needed. For those cases where no bolus is needed, its use might be detrimental as the lack of radiation scatter may be beneficial to the patient, although the 2% tolerance for dose calculation accuracy recommended in the AAPM TG-56 report is not fulfilled.  
  Address [Granero, Domingo] Hosp Gen Univ, ERESA, Dept Radiat Phys, Valencia 46014, Spain, Email: dgranero@eresa.com  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000331213300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1704  
Permanent link to this record
 

 
Author Brown, J.M.C.; Dimmock, M.R.; Gillam, J.E.; Paganin, D.M. doi  openurl
  Title A low energy bound atomic electron Compton scattering model for Geant4 Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B  
  Volume 338 Issue Pages 77-88  
  Keywords Compton scattering; Geant4; Radiation transport modelling; Monte Carlo method  
  Abstract A two-body fully relativistic three-dimensional scattering framework has been utilised to develop an alternative Compton scattering computational model to those adapted from Ribberfors' work for Monte Carlo modelling of Compton scattering. Using a theoretical foundation that ensures the conservation of energy and momentum in the relativistic impulse approximation, this new model, the Monash University Compton scattering model, develops energy and directional algorithms for both the scattered photon and ejected Compton electron from first principles. The Monash University Compton scattering model was developed to address the limitation of the Compton electron directionality algorithms of other computational models adapted from Ribberfors' work. Here the development of the Monash University Compton scattering model, including its implementation in a Geant4 low energy electromagnetic physics class, G4LowEPComptonModel, is outlined. Assessment of the performance of G4LowEPComptonModel was undertaken in two steps: (1) comparison with respect to the two standard Compton scattering classes of Geant4 version 9.5, G4LivermoreComptonModel and G4PenelopeComptonModel, and (2) experimental comparison with respect to Compton electron kinetic energy spectra obtained from the Compton scattering of 662 key photons off the K-shell of gold. Both studies illustrate that the Monash University Compton scattering model, and in turn G4LowEPComptonModel, is a viable replacement for the majority of computational models that have been adapted from Ribberfors' work. It was also shown that the Monash University Compton scattering model is able to reproduce the Compton scattering triply differential cross-section Compton electron kinetic energy spectra of 662 keV photons K-shell scattering off of gold to within experimental uncertainty.  
  Address [Brown, J. M. C.; Paganin, D. M.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia, Email: jeremy.brown@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-583x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343390400012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1973  
Permanent link to this record
 

 
Author ATLAS Collaboration (Adragna, P. et al); Castelo, J.; Castillo Gimenez, V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 615 Issue 2 Pages 158-181  
  Keywords Calorimeter; Test-beam; ATLAS; Monte Carlo simulation; GEANT4; Hadronic shower development; Pion-proton response; Longitudinal shower profile for hadrons  
  Abstract The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.  
  Address [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia, Email: Margar.Simonyan@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276299900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 252  
Permanent link to this record
 

 
Author Jaworski, G.; Palacz, M.; Nyberg, J.; de Angelis, G.; de France, G.; Di Nitto, A.; Egea, F.J.; Erduran, M.N.; Erturk, S.; Farnea, E.; Gadea, A.; Gonzalez, V.; Gottardo, A.; Huyuk, T.; Kownacki, J.; Pipidis, A.; Roeder, B.; Soderstrom, P.A.; Sanchis, E.; Tarnowski, R.; Triossi, A.; Wadsworth, R.; Valiente-Dobon, J.J. doi  openurl
  Title Monte Carlo simulation of a single detector unit for the neutron detector array NEDA Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 673 Issue Pages 64-72  
  Keywords Monte Carlo simulation; BC501; BC501A; BC537; Liquid scintillator; Neutron detector; Geant4; NEDA  
  Abstract A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.  
  Address [Jaworski, G.; Palacz, M.; Kownacki, J.; Tarnowski, R.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland, Email: palacz@slcj.uw.edu.pl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301813500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 944  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva