toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomis, P.; Perez, A. url  doi
openurl 
  Title Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 1 Pages 012103 - 11pp  
  Keywords  
  Abstract We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.  
  Address [Gomis, P.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Pablo.Gomis@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000378909000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2739  
Permanent link to this record
 

 
Author Bru, L.A.; de Valcarcel, G.J.; Di Molfetta, G.; Perez, A.; Roldan, E.; Silva, F. url  doi
openurl 
  Title Quantum walk on a cylinder Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 3 Pages 032328 - 7pp  
  Keywords  
  Abstract We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or “hidden” extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.  
  Address [Bru, Luis A.] Univ Politecn Valencia, ITEAM Res Inst, Opt & Quantum Commun Grp, Camino Vera S-N, E-46022 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384060700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2823  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
  Year 2017 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 95 Issue 4 Pages 042112 - 5pp  
  Keywords  
  Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.  
  Address [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399931500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3102  
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. url  doi
openurl 
  Title Dirac equation as a quantum walk over the honeycomb and triangular lattices Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062111 - 5pp  
  Keywords  
  Abstract A discrete-time quantum walk (QW) is essentially an operator driving the evolution of a single particle on the lattice, through local unitaries. Some QWs admit a continuum limit, leading to well-known physics partial differential equations, such as the Dirac equation. We show that these simulation results need not rely on the grid: the Dirac equation in (2 + 1) dimensions can also be simulated, through local unitaries, on the honeycomb or the triangular lattice, both of interest in the study of quantum propagation on the nonrectangular grids, as in graphene-like materials. The latter, in particular, we argue, opens the door for a generalization of the Dirac equation to arbitrary discrete surfaces.  
  Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Aix Marseille Univ, Univ Toulon, LIS, CNRS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3624  
Permanent link to this record
 

 
Author Marquez-Martin, I.; Arnault, P.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 3 Pages 032333 - 8pp  
  Keywords  
  Abstract Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit, the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the conserved current satisfies the corresponding conservation equation.  
  Address [Marquez-Martin, Ivan; Arnault, Pablo; Di Molfetta, Giuseppe; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: ivan.marquez@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446163200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3750  
Permanent link to this record
 

 
Author Arnault, P.; Perez, A.; Arrighi, P.; Farrelly, T. url  doi
openurl 
  Title Discrete-time quantum walks as fermions of lattice gauge theory Type Journal Article
  Year 2019 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 99 Issue 3 Pages 032110 - 16pp  
  Keywords  
  Abstract It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e., the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go results stating that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys. 85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for a (1+1)-dimensional space-time.  
  Address [Arnault, Pablo; Perez, Armando] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: pablo.arnault@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000461896700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3950  
Permanent link to this record
 

 
Author Bernal, A.; Perez, A. url  doi
openurl 
  Title Analytic behavior of the QED polarizability function at finite temperature Type Journal Article
  Year 2012 Publication AIP Advances Abbreviated Journal AIP Adv.  
  Volume 2 Issue 1 Pages 012152 - 9pp  
  Keywords  
  Abstract We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.  
  Address [Bernal, A.] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08028 Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302225400070 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 983  
Permanent link to this record
 

 
Author Arrighi, P.; Di Molfetta, G.; Marquez-Martin, I.; Perez, A. url  doi
openurl 
  Title From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue Pages 10904 - 10pp  
  Keywords  
  Abstract A discrete-time Quantum Walk (QW) is an operator driving the evolution of a single particle on the lattice, through local unitaries. In a previous paper, we showed that QWs over the honeycomb and triangular lattices can be used to simulate the Dirac equation. We apply a spacetime coordinate transformation upon the lattice of this QW, and show that it is equivalent to introducing spacetime-dependent local unitaries-whilst keeping the lattice fixed. By exploiting this duality between changes in geometry, and changes in local unitaries, we show that the spacetime-dependent QW simulates the Dirac equation in (2 + 1)-dimensional curved spacetime. Interestingly, the duality crucially relies on the non linear-independence of the three preferred directions of the honeycomb and triangular lattices: The same construction would fail for the square lattice. At the practical level, this result opens the possibility to simulate field theories on curved manifolds, via the quantum walk on different kinds of lattices.  
  Address [Arrighi, Pablo; Di Molfetta, Giuseppe; Marquez-Martin, Ivan] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France, Email: pablo.arrighi@univ-amu.fr;  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477701800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4081  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A. url  doi
openurl 
  Title A quantum walk simulation of extra dimensions with warped geometry Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages 1926 - 12pp  
  Keywords  
  Abstract We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle in a model with an ordinary spatial dimension, and one extra dimension with warped geometry between two branes. Such a setup constitutes a 1+ 1 dimensional version of the Randall-Sundrum model, which plays an important role in high energy physics. In the continuum spacetime limit, the quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate some of the properties that can be reproduced by the quantum walk. In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible with the symmetries of the model. In this way, we obtain a localization effect whose strength is controlled by a warp coefficient. In other words, here localization arises from the geometry of the model, at variance with the usual effect that is originated from random irregularities, as in Anderson localization. In summary, we establish an interesting correspondence between a high energy physics model and localization in quantum walks.  
  Address [Angles-Castillo, Andreu] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.angles@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751472600024 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5107  
Permanent link to this record
 

 
Author Hinarejos, M.; Bañuls, M.C.; Perez, A.; de Vega, I. url  doi
openurl 
  Title Non-Markovianity and memory of the initial state Type Journal Article
  Year 2017 Publication Journal of Physics A Abbreviated Journal J. Phys. A  
  Volume 50 Issue 32 Pages 335301 - 17pp  
  Keywords non-Markovianity; quantum distinguisability; quantum fidelity  
  Abstract We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the Breuer-Laine-Piilo measure proposed in Breuer et al (2009 Phys. Rev. Lett. 103 210401). We illustrate our findings with explicit calculations for the case of a structured environment.  
  Address [Hinarejos, Margarida] Univ Republica, Fac Ingn, Inst Fis, Av Julio Herrera y Reissig 565, Montevideo 11300, Uruguay, Email: Armando.Perez@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1751-8113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405672800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3206  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva