toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Llosa, G.; Barrio, J.; Lacasta, C.; Bisogni, M.G.; Del Guerra, A.; Marcatili, S.; Barrillon, P.; Bondil-Blin, S.; de la Taille, C.; Piemonte, C. doi  openurl
  Title Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 23 Pages 7299-7315  
  Keywords  
  Abstract The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm x 12 mm x 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal.  
  Address [Llosa, G.; Barrio, J.; Lacasta, C.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284261000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 321  
Permanent link to this record
 

 
Author Ortega, P.G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J.E.; Lacasta, C.; Llosa, G.; Oliver, J.F.; Sala, P.R.; Solevi, P.; Rafecas, M. doi  openurl
  Title Noise evaluation of Compton camera imaging for proton therapy Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 5 Pages 1845-1863  
  Keywords proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM  
  Abstract Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.  
  Address [Ortega, P. G.; Cerutti, F.; Ferrari, A.] CERN European Org Nucl Res, CH-1217 Meyrin, Switzerland, Email: pgarciao@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000349530700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2115  
Permanent link to this record
 

 
Author Cabello, J.; Etxebeste, A.; Llosa, G.; Ziegler, S.I. doi  openurl
  Title Simulation study of PET detector limitations using continuous crystals Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 9 Pages 3673-3694  
  Keywords continuous crystals; parallax effects; depth of interaction; high resolution; small animal PET  
  Abstract Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 x 12 x 10 mm(3) LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 +/- 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of reflected light, and highly mitigated using two photodetectors. Using one photodetector, we obtained a piecewise DoI error model with a DoI resolution of 0.4-0.9 mm for a 1.2 AR crystal, and we observed that including a second photodetector or reducing the amount of reflections reduced the DoI bias but did not significantly improve the DoI resolution. Translating the piecewise DoI error model obtained in this study to image reconstruction we obtained a spatial resolution variability of 0.39 mm using 85% of the FoV, compared to 2.59 mm and 1.87 mm without DoI correction or with a dual layer system, respectively.  
  Address [Cabello, Jorge; Ziegler, Sibylle I.] Tech Univ Munich, Klinikum Rechts Isar, Nukl Med Klin & Poliklin, D-80290 Munich, Germany, Email: jorge.cabello@tum.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354104700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2226  
Permanent link to this record
 

 
Author Etxebeste, A.; Barrio, J.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title 3D position determination in monolithic crystals coupled to SiPMs for PET Type Journal Article
  Year 2016 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 61 Issue 10 Pages 3914-3934  
  Keywords monolithic crystal; silicon photomultiplier; depth of interaction  
  Abstract The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a 12 x 12 x 10 mm(3) LYSO crystal coupled to an 8 x 8-pixel array of SiPMs is evaluated. The 3D interaction position of.-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is similar to 0.9 mm FWHM and similar to 1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is similar to 5.3 mm for 5 mm thick crystal and similar to 9.6 mm for 10 mm thick crystal.  
  Address [Etxebeste, Ane; Barrio, John; Munoz, Enrique; Oliver, Josep F.; Solaz, Carles; Llosa, Gabriela] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: ane.etxebeste@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376792800014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2708  
Permanent link to this record
 

 
Author Solevi, P.; Muñoz, E.; Solaz, C.; Trovato, M.; Dendooven, P.; Gillam, J.E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Torres-Espallardo, I.; Llosa, G. doi  openurl
  Title Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams Type Journal Article
  Year 2016 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 61 Issue 14 Pages 5149-5165  
  Keywords ion-beam therapy; range verification; prompt gamma; Compton camera; GATE  
  Abstract In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing Na-22 and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.  
  Address [Solevi, Paola; Munoz, Enrique; Solaz, Carles; Trovato, Marco; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosa, Gabriela] IFIC CSIC UVEG, Inst Fis Corpuscular, Valencia, Spain, Email: paola.solevi@ovgu.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379555300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2754  
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Etxebeste, A.; Ortega, P.G.; Lacasta, C.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title Performance evaluation of MACACO: a multilayer Compton camera Type Journal Article
  Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 62 Issue 18 Pages 7321-7341  
  Keywords Compton imaging; Compton camera; continuous LaBr3 crystal; silicon photomultiplier; hadron therapy  
  Abstract Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a Na-22 and an Y-88 radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a Na-22 source at a distance of 5 cm.  
  Address [Munoz, Enrique; Barrio, John; Etxebeste, Ane; Ortega, Pablo G.; Lacasta, Carlos; Oliver, Josep F.; Solaz, Carles; Llosa, Gabriela] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408229900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3253  
Permanent link to this record
 

 
Author Muñoz, E.; Barrio, J.; Bernabeu, J.; Etxebeste, A.; Lacasta, C.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F. doi  openurl
  Title Study and comparison of different sensitivity models for a two-plane Compton camera Type Journal Article
  Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 63 Issue 13 Pages 135004 - 19pp  
  Keywords Compton camera imaging; MLEM; Monte Carlo simulations; image quality  
  Abstract Given the strong variations in the sensitivity of Compton cameras for the detection of events originating from different points in the field of view (FoV), sensitivity correction is often necessary in Compton image reconstruction. Several approaches for the calculation of the sensitivity matrix have been proposed in the literature. While most of these models are easily implemented and can be useful in many cases, they usually assume high angular coverage over the scattered photon, which is not the case for our prototype. In this work, we have derived an analytical model that allows us to calculate a detailed sensitivity matrix, which has been compared to other sensitivity models in the literature. Specifically, the proposed model describes the probability of measuring a useful event in a two-plane Compton camera, including the most relevant physical processes involved. The model has been used to obtain an expression for the system and sensitivity matrices for iterative image reconstruction. These matrices have been validated taking Monte Carlo simulations as a reference. In order to study the impact of the sensitivity, images reconstructed with our sensitivity model and with other models have been compared. Images have been reconstructed from several simulated sources, including point-like sources and extended distributions of activity, and also from experimental data measured with Na-22 sources. Results show that our sensitivity model is the best suited for our prototype. Although other models in the literature perform successfully in many scenarios, they are not applicable in all the geometrical configurations of interest for our system. In general, our model allows to effectively recover the intensity of point-like sources at different positions in the FoV and to reconstruct regions of homogeneous activity with minimal variance. Moreover, it can be employed for all Compton camera configurations, including those with low angular coverage over the scatterer.  
  Address [Munoz, Enrique; Barrio, John; Bernabeu, Jose; Etxebeste, Ane; Lacasta, Carlos; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436390800004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3639  
Permanent link to this record
 

 
Author Etxebeste, A.; Barrio, J.; Bernabeu, J.; Lacasta, C.; Llosa, G.; Muñoz, E.; Ros, A.; Oliver, J.F. doi  openurl
  Title Study of sensitivity and resolution for full ring PET prototypes based on continuous crystals and analytical modeling of the light distribution Type Journal Article
  Year 2019 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 64 Issue 3 Pages 035015 - 17pp  
  Keywords continuous crystals; NEMA NU 4-2008; positron emission tomography (PET); Monte Carlo simulations; image reconstruction; depth of interaction  
  Abstract Sensitivity and spatial resolution are the main parameters to maximize in the performance of a PET scanner. For this purpose, detectors consisting of a combination of continuous crystals optically coupled to segmented photodetectors have been employed. With the use of continuous crystals the sensitivity is increased with respect to the pixelated crystals. In addition, spatial resolution is no longer limited to the crystal size. The main drawback is the difficulty in determining the interaction position. In this work, we present the characterization of the performance of a full ring based on cuboid continuous crystals coupled to SiPMs. To this end, we have employed the simulations developed in a previous work for our experimental detector head. Sensitivity could be further enhanced by using tapered crystals. This enhancement is obtained by increasing the solid angle coverage, reducing the wedge-shaped gaps between contiguous detectors. The performance of the scanners based on both crystal geometries was characterized following NEMA NU 4-2008 standardized protocol in order to compare them. An average sensitivity gain over the entire axial field of view of 13.63% has been obtained with tapered geometry while similar performance of the spatial resolution has been proven with both scanners. The activity at which NECR and true peak occur is smaller and the peak value is greater for tapered crystals than for cuboid crystals. Moreover, a higher degree of homogeneity was obtained in the sensitivity map due to the tighter packing of the crystals, which reduces the gaps and results in a better recovery of homogeneous regions than for the cuboid configuration. Some of the results obtained, such as spatial resolution, depend on the interaction position estimation and may vary if other method is employed.  
  Address [Etxebeste, Ane; Barrio, John; Bernabeu, Jose; Lacasta, Carlos; Llosa, Gabriela; Munoz, Enrique; Ros, Ana; Oliver, Josef F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: ane.etxebeste@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457182500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3897  
Permanent link to this record
 

 
Author Etxebeste, A.; Dauvergne, D.; Fontana, M.; Letang, J.M.; Llosa, G.; Muñoz, E.; Oliver, J.F.; Testa, E.; Sarrut, D. doi  openurl
  Title CCMod: a GATE module for Compton camera imaging simulation Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 5 Pages 055004 - 17pp  
  Keywords Monte Carlo; simulation; gamma imaging; Compton camera  
  Abstract Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.  
  Address [Etxebeste, A.; Letang, J. M.; Sarrut, D.] Univ Lyon 1, Univ Lyon, CREATIS, CNRS UMR5220,Inserm U1044,INSA Lyon, Lyon, France, Email: ane.etxebeste@creatis.insa-lyon.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519034800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4321  
Permanent link to this record
 

 
Author Muñoz, E.; Barrientos, L.; Bernabeu, J.; Borja-Lloret, M.; Llosa, G.; Ros, A.; Roser, J.; Oliver, J.F. doi  openurl
  Title A spectral reconstruction algorithm for two-plane Compton cameras Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 2 Pages 025011 - 17pp  
  Keywords Compton imaging; Compton camera; hadron therapy; image reconstruction  
  Abstract One factor limiting the current applicability extent of hadron therapy is the lack of a reliable method for real time treatment monitoring. The use of Compton imaging systems as monitors requires the correct reconstruction of the distribution of prompt gamma productions during patient irradiation. In order to extract the maximum information from all the measurable events, we implemented a spectral reconstruction method that assigns to all events a probability of being either partial or total energy depositions. The method, implemented in a list-mode maximum likelihood expectation maximization algorithm, generates a four dimensional image in the joint spatial-spectral domain, in which the voxels containing the emission positions and energies are obtained. The analytical model used for the system response function is also employed to derive an analytical expression for the sensitivity, which is calculated via Monte Carlo integration. The performance of the method is evaluated through reconstruction of various experimental and simulated sources with different spatial and energy distributions. The results show that the proposed method can recover the spectral and spatial information simultaneously, but only under the assumption of ideal measurements. The analysis of the Monte Carlo simulations has led to the identification of two important degradation sources: the mispositioning of the gamma interaction point and the missing energy recorded in the interaction. Both factors are related to the high energy transferred to the recoil electrons, which can travel far from the interaction point and even escape the detector. These effects prevent the direct application of the current method in more realistic scenarios. Nevertheless, experimental point-like sources have been accurately reconstructed and the spatial distributions and spectral emission of complex simulated phantoms can be identified.  
  Address [Munoz, Enrique; Barrientos, Luis; Bernabeu, Jose; Borja-Lloret, Marina; Llosa, Gabriela; Ros, Ana; Roser, Jorge; Oliver, Josep F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000520111400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva