KM3NeT Collaboration(Aiello, S. et al), Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., Hernandez-Rey, J. J., et al. (2019). KM3NeT front-end and readout electronics system: hardware, firmware, and software. J. Astron. Telesc. Instrum. Syst., 5(4), 046001–15pp.
Abstract: The KM3NeT research infrastructure being built at the bottom of the Mediterranean Sea will host water-Cherenkov telescopes for the detection of cosmic neutrinos. The neutrino telescopes will consist of large volume three-dimensional grids of optical modules to detect the Cherenkov light from charged particles produced by neutrino-induced interactions. Each optical module houses 31 3-in. photomultiplier tubes, instrumentation for calibration of the photomultiplier signal and positioning of the optical module, and all associated electronics boards. By design, the total electrical power consumption of an optical module has been capped at seven Watts. We present an overview of the front-end and readout electronics system inside the optical module, which has been designed for a 1-ns synchronization between the clocks of all optical modules in the grid during a life time of at least 20 years. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Corredoira, I., et al. (2021). Architecture and performance of the KM3NeT front-end firmware. J. Astron. Telesc. Instrum. Syst., 7(1), 016001–24pp.
Abstract: The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.
|
Real, D., Ballester, J., Calvo, D., Manzaneda, M., Moreno, A., Albiol, F., et al. (2025). Readout System for Multipurpose Real-Time and Portable Spectrometer. Electronics, 14(3), 506–21pp.
Abstract: A ready-to-use spectrometer-based product, which focuses on data acquisition using a BeagleBone board and a Hamamatsu C12666MA spectrometer module, is presented. The device meets stringent requirements, including the ability to measure the visible light spectrum over a wide range of intensities, being compact and lightweight, and having customizable electronics to suit different application needs. The system's primary component is a Hamamatsu C12666MA spectrometer module with a measurement range of 341 nm to 780 nm, which is supplemented by supporting electronics such as a microcontroller and an analog-to-digital converter. The development encompasses hardware design, the fabrication of a control board, and software development for spectral acquisition and visualization. The software controls the spectral measurement process and facilitates data processing and analysis. The results demonstrate that the designed system can accurately capture spectra and fulfill the specified requirements. Additionally, this work investigates and evaluates the potential migration of the data acquisition system to Field-Programmable Gate Array technology. Such a migration offers several advantages, including real-time processing, parallel data handling capabilities, reduced latency, and greater flexibility in adapting to various spectrometer configurations, as well as the possibility to work in a synchronized way with other devices. These improvements would significantly expand the system's potential applications in real-time spectroscopy and other demanding optical measurement tasks. The proposed system thus provides a foundation for future enhancements, which could exploit Field-Programmable Gate Array technology, potentially revolutionizing the efficiency and application scope of portable spectrometry devices.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Cecchini, V., Garcia Soto, A., et al. (2025). On the Potential Cosmogenic Origin of the Ultra-high-energy Event KM3-230213A. Astrophys. J. Lett., 984(2), L41–8pp.
Abstract: On 2023 February 13, the KM3NeT/ARCA telescope observed a track-like event compatible with a ultra-high-energy muon with an estimated energy of 120 PeV, produced by a neutrino with an even higher energy, making it the most energetic neutrino event ever detected. A diffuse cosmogenic component is expected to originate from the interactions of ultra-high-energy cosmic rays with ambient photon and matter fields. The flux level required by the KM3NeT/ARCA event is, however, in tension with the standard cosmogenic neutrino predictions based on the observations collected by the Pierre Auger Observatory and Telescope Array over the last decade of the ultra-high-energy cosmic rays above the ankle (hence from the local Universe, z less than or similar to 1). We show here that both observations can be reconciled by extending the integration of the equivalent cosmogenic neutrino flux up to a redshift of zmax=6 and considering either source evolution effects or the presence of a subdominant independent proton component in the ultra-high-energy cosmic-ray flux, thus placing constraints on known cosmic accelerators.
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2012). The positioning system of the ANTARES Neutrino Telescope. J. Instrum., 7, T08002–20pp.
Abstract: The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Keywords: Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
|