Esteve, R., Toledo, J. F., Herrero, V., Simon, A., Monrabal, F., Alvarez, V., et al. (2021). The Event Detection System in the NEXT-White Detector. Sensors, 21(2), 673–18pp.
Abstract: This article describes the event detection system of the NEXT-White detector, a 5 kg high pressure xenon TPC with electroluminescent amplification, located in the Laboratorio Subterraneo de Canfranc (LSC), Spain. The detector is based on a plane of photomultipliers (PMTs) for energy measurements and a silicon photomultiplier (SiPM) tracking plane for offline topological event filtering. The event detection system, based on the SRS-ATCA data acquisition system developed in the framework of the CERN RD51 collaboration, has been designed to detect multiple events based on online PMT signal energy measurements and a coincidence-detection algorithm. Implemented on FPGA, the system has been successfully running and evolving during NEXT-White operation. The event detection system brings some relevant and new functionalities in the field. A distributed double event processor has been implemented to detect simultaneously two different types of events thus allowing simultaneous calibration and physics runs. This special feature provides constant monitoring of the detector conditions, being especially relevant to the lifetime and geometrical map computations which are needed to correct high-energy physics events. Other features, like primary scintillation event rejection, or a double buffer associated with the type of event being searched, help reduce the unnecessary data throughput thus minimizing dead time and improving trigger efficiency.
|
Vijande, J., Tedgren, A. C., Ballester, F., Baltas, D., Papagiannis, P., Rivard, M. J., et al. (2021). Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates. Phys. Imag. Radiat. Oncol., 19, 108–111.
Abstract: Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
|
Oliver-Canamas, L., Vijande, J., Candela-Juan, C., Gimeno-Olmos, J., Pujades-Claumarchirant, M. C., Rovira-Escutia, J. J., et al. (2023). A User-Friendly System for Mailed Dosimetric Audits of Ir-192 or Co-60 HDR Brachytherapy Sources. Cancers, 15(9), 2484–14pp.
Abstract: Nowadays, the options available to perform external dosimetric audits of the high dose rate (HDR) brachytherapy treatment process are limited. In this work, we present a methodology that allows for performing dosimetric audits in this field. A phantom was designed and manufactured for this purpose. The criteria for its design, together with the in-house measurements for its characterization, are presented. The result is a user-friendly system that can be mailed to perform dosimetric audits in HDR brachytherapy on-site for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Objectives: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Methods: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for Ir-192, and with a BEBIG Multisource for Co-60 were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different Ir-192 sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. Results: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. Conclusions: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either Ir-192 or Co-60 sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG Ir-192 sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.
|
Lozares, S., Tur, P., Ballester, F., Bundschuh, R. A., Gonzalez-Perez, V., Jaberi, R., et al. (2025). Head and neck and skin (HNS) GEC-ESTRO and BRAPHYQS working groups joint critical review of the use of Rhenium-188 in dermato-oncology. Clin. Transl. Radiat. Oncol., 53, 100991–9pp.
Abstract: Non-melanoma skin cancers are increasing globally, prompting the need for innovative, non-invasive treatment approaches. Radioactive rhenium (188Re) paste has emerged as an open-source radiation-based modality in dermato-oncology, offering a novel alternative to conventional radiotherapy and brachytherapy. In this review, a systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar for studies published over the past 20 years. Data were extracted from case series, pilot studies, and clinical trials, with particular emphasis on response rates, dosimetric parameters, and treatment-associated toxicity. Findings from approximately 240 patients demonstrated complete response rates ranging from 86 % to 100 % after one or two treatment applications, while dosimetric analyses revealed a rapid dose fall-off that effectively confines the therapeutic effect to a tissue depth of 2-3 mm, with most adverse effects being mild and transient. Notably, 188Re differs from conventional brachytherapy (specifically high-dose-rate modality) due to its open-source application and unique dosimetric profile. The use of 188Re in clinical practice mandates a highly specialized, multidisciplinary team, including radiation oncologists, nuclear medicine specialists, and experienced medical physicists, and strict quality assurance protocols, thereby limiting its application to carefully selected cases. Although 188Re therapy offers a promising alternative for the treatment of superficial skin cancers, its distinct clinical and dosimetric characteristics warrant further randomized studies with extended follow-up to validate its efficacy and refine patient selection criteria under rigorous multidisciplinary oversight.
|
Hueso-Gonzalez, F., Vijande, J., Ballester, F., Perez-Calatayud, J., & Siebert, F. A. (2015). A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy. Phys. Med. Biol., 60(14), 5455–5469.
Abstract: In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities.
|