|   | 
Details
   web
Records
Author Morisi, S.; Valle, J.W.F.
Title Neutrino masses and mixing: a flavour symmetry roadmap Type Journal Article
Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.
Volume 61 Issue 4-5 Pages 466-492
Keywords Neutrino masses; neutrino mixing; flavour symmetry
Abstract Over the last ten years tri-bimaximal mixing has played an important role in modeling the flavour problem. We give a short review of the status of flavour symmetry models of neutrino mixing. We concentrate on non-Abelian discrete symmetries, which provide a simple way to account for the TBM pattern. We discuss phenomenological implications such as neutrinoless double beta decay, lepton flavour violation as well as theoretical aspects such as the possibility to explain quarks and leptons within a common framework, such as grand unified models.
Address Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: morisi@ific.uv.es
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0015-8208 ISBN Medium
Area Expedition Conference
Notes WOS:000317019900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1412
Permanent link to this record
 

 
Author Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title New Ambiguity in Probing CP Violation in Neutrino Oscillations Type Journal Article
Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 117 Issue 6 Pages 061804 - 5pp
Keywords
Abstract If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase phi associated with nonunitarity. This leads to an ambiguity in extracting the “standard” three-neutrino phase delta(CP), which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of delta(CP).
Address [Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000381442800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2812
Permanent link to this record
 

 
Author Lazarides, G.; Reig, M.; Shafi, Q.; Srivastava, R.; Valle, J.W.F.
Title Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 122 Issue 15 Pages 151301 - 5pp
Keywords
Abstract We show that if global lepton number symmetry is spontaneously broken in a postinflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known “Majoron paradigm” for neutrino mass generation. We propose some realistic examples that allow spontaneous lepton number breaking to be safe from such domain walls.
Address [Lazarides, George] Aristotle Univ Thessaloniki, Sch Elect & Comp Engn, Fac Engn, Thessaloniki 54124, Greece, Email: lazaride@eng.auth.gr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000464756200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3985
Permanent link to this record
 

 
Author Batra, A.; Camara, H.B.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F.
Title Axion Paradigm with Color-Mediated Neutrino Masses Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 5 Pages 051801 - 7pp
Keywords
Abstract We propose a generalized Kim-Shifman-Vainshtein-Zakharov-type axion framework in which colored fermions and scalars act as two -loop Majorana neutrino -mass mediators. The global Peccei-Quinn symmetry under which exotic fermions are charged solves the strong CP problem. Within our general proposal, various setups can be distinguished by probing the axion-to-photon coupling at helioscopes and haloscopes. We also comment on axion dark -matter production in the early Universe.
Address [Batra, A.; Camara, H. B.; Joaquim, F. R.] Univ Lisbon, Inst Super Tecn, Dept Fis, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: aditya.batra@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001179272300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6012
Permanent link to this record
 

 
Author Peinado, E.; Reig, M.; Srivastava, R.; Valle, J.W.F.
Title Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion Type Journal Article
Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 35 Issue 21 Pages 2050176 - 9pp
Keywords Peccei-Quinn symmetry; axion; neutrinos
Abstract We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.
Address [Peinado, Eduardo] Univ Nacl Autonoma Mexico, Inst Fis, AP 20-364, Ciudad De Mexico 01000, Mexico, Email: epeinado@fisica.unam.mx;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0217-7323 ISBN Medium
Area Expedition Conference
Notes WOS:000550796000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4467
Permanent link to this record